【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点、,且与直线交于点.
(1)若是线段上的点,且的面积为,求直线的函数表达式.
()在()的条件下,设是射线上的点,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标,若不存在,请说明理由.
【答案】(1)(2)存在,或或
【解析】试题分析:(1)对于直线解析式,令x=0,求出y的值,确定C的坐标;根据D在直线OA上,设,表示出△COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;
(2)在(1)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形为菱形时,由,得到四边形为正方形;②当四边形为菱形时;③当四边形为菱形时;分别求出Q坐标即可.
解:()设.
∵且,
∴
∴
∴.
令直线解析式为
把,代入得:
∴.
∴.
()存在.
①当四边形为菱形时.
∵得四边形为正方形
∴,
即.
②当四边形为菱形时
∵得
代入得,
∴.
③当四边形为菱形时
∴
∴
综上得点的坐标为或或.
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,M为边AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.试说明BD与MF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列试验中,概率最大的是( )
A. 抛掷一枚质地均匀的硬币,出现正面的概率
B. 抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数的概率
C. 在一副洗匀的扑克(背面朝上)中任取一张,恰好为方块的概率
D. 三张同样的纸片,分别写有数字2、3、4,洗匀后背面向上,任取一张恰好为偶数的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,∠B、∠C的平分线相交于点O,作BO、CO的垂直平分线分别交BC于点E、F.小明说:“E、F是BC的三等分点.”你同意他的说法吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,同底数幂的乘法法则为:am·an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)·h(n),请根据这种新运算填空:
(1)若h(1)=,则h(2)=________;
(2)若h(1)=k(k≠0),则h(n)·h(2017)=________(用含n和k的代数式表示,其中n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1) -+(-2)-3;
(2)(-3ab)·(-a2c)3·5b2(c2)3;
(3)x2(x-1)-x(x2+x-1);
(4)(a+3)(a-1)+a(a-2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距20 km,甲、乙两人都从A地去B地,如图,l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系,下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,点P从点A开始沿边AB向点B以2 cm/s的速度移动,点Q从点B开始沿边BC向点C以4 cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com