【题目】如图,在ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边形;
(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.
【答案】(1)见解析;(2)成立,见解析
【解析】试题分析:(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.
(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,
∴DC∥AB,∠DCB=∠DAB=60°.
∴∠ADE=∠CBF=60°.
∵AE=AD,CF=CB,
∴△AED,△CFB是正三角形.
∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.
∴四边形AFCE是平行四边形.
(2)解:上述结论还成立.
证明:∵四边形ABCD是平行四边形,
∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.
∴∠ADE=∠CBF.
∵AE=AD,CF=CB,
∴∠AED=∠ADE,∠CFB=∠CBF.
∴∠AED=∠CFB.
又∵AD=BC,
在△ADE和△CBF中.
,
∴△ADE≌△CBF(AAS).
∴∠AED=∠BFC,∠EAD=∠FCB.
又∵∠DAB=∠BCD,
∴∠EAF=∠FCE.
∴四边形EAFC是平行四边形.
科目:初中数学 来源: 题型:
【题目】某学习小组五名同学在期末模拟考试(满分为120)的成绩如下:100、100、x、x、80.已知这组数据的中位数和平均数相等,那么整数x的值可以是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.
(1)若∠B=40°,∠C=30°,则∠DAE= ;
(2)若∠B=80°,∠C=40°,则∠DAE= ;
(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为 .理由如下:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图, AB∥CD, OE平分∠BOC, OF⊥OE, OP⊥CD, ∠ABO=a°, 则下列结论:
①∠BOE=(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.
其中正确的个数有多少个? --------------( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+2,b+k)两点.
(1)求:反比例函数的解析式.
(2)如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.
(3)利用(2)的结果,问在x轴上是否存在点P,使得△AOP为等腰三角形?若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.
(1)按下列语句画出图形:
①AD⊥BC,垂足为D;
②∠BCN的平分线CE与AD的延长线交于点E;
③连接BE.
(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形: ≌ , ≌ ;并选择其中的一对全等三角形,予以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD一条对角线长为6,边AB长为方程y2﹣7y+10=0的一个根,则菱形ABCD周长为( )
A. 8 B. 20 C. 8或20 D. 10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com