精英家教网 > 初中数学 > 题目详情

【题目】如图,已知等边三角形中,的中点,延长线上的一点,且,作,垂足为,求:

1的度数;

2)求证:的中点.

【答案】130°;(2)证明见解析.

【解析】

1)根据等边三角形的性质可得∠ACB=ABC=60°,然后根据等边对等角可得∠E=CDE,最后利用三角形外角的性质即可得出结论;

2)连接BD,根据三线合一可得∠DBC=30°,然后根据角对等边可得DB=DE,再根据三线合一即可得出结论.

解:(1)∵三角形ABC是等边三角形,

∴∠ACB=ABC=60°,

又∵CE=CD

∴∠E=CDE

又∵∠ACB=E+CDE

∴∠E=30°;

2)证明:连接BD

∵等边△ABC中,DAC的中点,

∴∠DBC=30°

(1)知∠E=30°

∴∠DBC=E=30°

DB=DE

又∵DMBC

MBE的中点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.

(1)用含t的代数式表示RtCPQ的面积S;

(2)t=3秒时,P、Q两点之间的距离是多少?

(3)t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

已知点D为等边△ABC 的边AB所在直线上一动点(点D与点A和点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接 AE

操作发现:

1)如图1,点D在边AB上,则 AEBD 有怎样的数量关系? 说明理由;

类比猜想:

2)如图2,若点D在边BA延长线上,则 AEBD有怎样的数量关系? 说明理由;

拓广探究:

3)如图3,点D在边AB上,以CD为边分别在CD下方和上方作等边△CDF 和等边△CDE,连接 AEBF,直接写出AEBF AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程: (1) x﹣1=(1﹣x2 ; (2) x2﹣2(x + 4)= 0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点P从点B出发,以速度沿向点C运动,设点P的运动时间为t.

1_______.(用含t的代数式表示)

2)当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点A运动,当时,求v的值.

3)在(2)的条件下,求v的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高中学生身体素质学校开设了A篮球、B足球、C跳绳、D羽毛球四种体育活动为了解学生对这四种体育活动的喜欢情况在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种)将数据进行整理并绘制成以下两幅统计图(未画完整)

1)这次调查中一共调查了________名学生

2)请补全两幅统计图

3)若有3名喜欢跳绳的学生1名喜欢足球的学生组队外出参加一次联谊活动欲从中选出2人担任组长(不分正副)求一人是喜欢跳绳、一人是喜欢足球的学生的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.

(1)如图1,求DE与BC的数量关系;

(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,∠PDF=60°连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程kx2+(3k+1)x+3=0.

(1)求证:无论k取任何实数时,方程总有实数根;

(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;

(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.

查看答案和解析>>

同步练习册答案