【题目】如图,已知等边三角形中,是的中点,是延长线上的一点,且,作,垂足为,求:
(1)的度数;
(2)求证:是的中点.
【答案】(1)30°;(2)证明见解析.
【解析】
(1)根据等边三角形的性质可得∠ACB=∠ABC=60°,然后根据等边对等角可得∠E=∠CDE,最后利用三角形外角的性质即可得出结论;
(2)连接BD,根据三线合一可得∠DBC=30°,然后根据角对等边可得DB=DE,再根据三线合一即可得出结论.
解:(1)∵三角形ABC是等边三角形,
∴∠ACB=∠ABC=60°,
又∵CE=CD,
∴∠E=∠CDE,
又∵∠ACB=∠E+∠CDE,
∴∠E=30°;
(2)证明:连接BD,
∵等边△ABC中,D是AC的中点,
∴∠DBC=30°
由(1)知∠E=30°
∴∠DBC=∠E=30°
∴DB=DE
又∵DM⊥BC
∴M是BE的中点.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.
(1)用含t的代数式表示Rt△CPQ的面积S;
(2)当t=3秒时,P、Q两点之间的距离是多少?
(3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
已知点D为等边△ABC 的边AB所在直线上一动点(点D与点A和点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接 AE.
操作发现:
(1)如图1,点D在边AB上,则 AE与BD 有怎样的数量关系? 说明理由;
类比猜想:
(2)如图2,若点D在边BA延长线上,则 AE与BD有怎样的数量关系? 说明理由;
拓广探究:
(3)如图3,点D在边AB上,以CD为边分别在CD下方和上方作等边△CDF 和等边△CDE,连接 AE,BF,直接写出AE,BF与 AB的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点P从点B出发,以速度沿向点C运动,设点P的运动时间为t秒.
(1)_______.(用含t的代数式表示)
(2)当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点A运动,当≌时,求v的值.
(3)在(2)的条件下,求≌时v的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了________名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,求DE与BC的数量关系;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,∠PDF=60°连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程kx2+(3k+1)x+3=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;
(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com