【题目】已知二次函数y=ax2+bx+c的图象与x轴交于点(-3,0),(x1,0),且2<x1<3,与y轴的负半轴交于点(0,-3)的上方.下列结论:①a>b>0;②6a+c<0;③9a+c>0;④3a<b+1.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
试题解析:∵二次函数的图象开口向上,
∴a>0;
∵二次函数y=ax2+bx+c的图象与x轴交于点(-3,0),(x1,0),且2<x1<3,
∴-<-<0,
∴a>b>0,
∴结论①正确;
∵x=-3时,y=0,
∴9a-3b+c=0,
∴(6a+c)+(3a-3b)=0;
又∵a>b>0,
∴3a-3b>0,
∴6a+c<0,
∴结论②正确;
∵x=-3时,y=0,
∴9a-3b+c=0;
∵x=3时,y>0,
∴9a+3b+c>0,
∴(9a-3b+c)+(9a+3b+c)>0,
∴9a+c>0,
∴结论③正确;
当x=-3时,y=0,可得9a-3b+c=0,
则3a-b=-,
∵-3<c<0,
∴-<1,
∴3a<b+1,故④正确.
故选D.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与点B,C重合),过点C作CN⊥DM交AB于点N,连结OM、ON,MN.下列五个结论:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,则S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正确结论是_____;(只填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明从点A走到点D的过程中,他上升的高度;
(2)大树BC的高度约为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是( ).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.
(1)已知M(p,2p)在反比例函数y=的图象上,且[M]=3,求反比例函数的解析式;
(2)已知点A是直线y=x+2上的点,且[A]=4,求点A的坐标;
(3)若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0).B(5,0)两点,与y轴交于点C.
(1)求此物线的解析式;
(2)在此物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;
(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在直角坐标平面内,已知⊙O的半径为R,点A为⊙O上任意一点,定点B与圆心O的距离为m,线段AB的长度为l.则当m≥R时,l的最大值和最小值依次为 , ;当m<R时,l的最大值和最小值依次为 , .
(2)如图,⊙O的半径为2,点P的“K值”定义如下:若点Q为⊙O上任意一点,线段PQ长度的最大值与最小值之差即为点P的“K值”,记为KP,特别地,当点P,Q重合时,线段PQ的长度为0.
①若点A(6,8),B(﹣1,0),则KA= ,KB= .
②若直线y=2x﹣1上存在点P,使,求出点P的横坐标;
③直线(b>0)与x轴,y轴分别交于A,B,若线段AB上存在点P,使得,请你直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com