精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=2,与x轴的一个交点坐标(40),其部分图象如图所示,下列结论:①抛物线过原点;②ab+c04a+b+c=0④抛物线的顶点坐标为(2b);⑤当x1时,yx增大而增大.其中结论正确的是(  )

A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤

【答案】C

【解析】∵抛物线y=ax2+bx+ca≠0)的对称轴为直线x=2,与x轴的一个交点坐标(40),

∴抛物线与x轴的另一个交点为(00),故①正确,

x=﹣1时,y=ab+c0,故②错误,

,得4a+b=0b=4a

∵抛物线过点(00),则c=0

4a+b+c=0,故③正确,

y=ax2+bx=ax+2=ax+2=ax224a=ax22+b

∴此函数的顶点坐标为(2b),故④正确,

x1时,yx的增大而减小,故⑤错误,

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕顶点C逆时针旋转得到A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则A′BA等于(  )

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 Rt△ABC 中,∠A=90°,∠C=30°.将△ABC 绕点 B 顺时针旋转 60°得到△A'BC',其中点 A',C'分别是点 A,C 的对应点.

(1)作出△A'BC'(要求尺规作图,不写作法,保留作图痕迹);

(2)连接 AA',求∠C'A'A 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,BA的正东方向,且相距100里,测得地点CA的南偏东60,在B的南偏东30方向上,如图所示,若救助一号和救助二号的速度分别为40/小时和30/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒.

备用图

1___________

2)若点恰好在的角平分线上,求此时的值:

3)在运动过程中,当为何值时,为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC与∠BAD的度数比为12,周长是48cm,求:

1)两条对角线的长度;

2)菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,已知抛物线 L1:y=﹣x2+2x+3 x 轴交于 A,B 两点A在点 B 的左侧,与 y 轴交于点 C,在 L1 上任取一点 P,过点 P 作直线 l⊥x 轴, 垂足为D,将 L1 沿直线 l 翻折得到抛物线L2,交 x 轴于点 M,N(M 在点 N 的左侧).

(1)L1 L2 重合时,求点 P 的坐标;

(2)当点 P 与点 B 重合时,求此时 L2 的解析式;并直接写出 L1 与 L2 中,y 均随x 的增大而减小时的 x 的取值范围;

(3)连接 PM,PB,设点 P(m,n),当 n=m 时,求△PMB 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.

(1)求证:△BDG∽△DEG;

(2)若EGBG=4,求BE的长.

查看答案和解析>>

同步练习册答案