【题目】如图,中,,,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒.
备用图
(1)___________;
(2)若点恰好在的角平分线上,求此时的值:
(3)在运动过程中,当为何值时,为等腰三角形.
【答案】(1)6;(2)的值为或;(3)当或或或时,为等腰三角形.
【解析】
(1)根据勾股定理可以得到AC;
(2)过作于,求出AD=2,设,则,根据勾股定理求出CP,根据P所走的路径为AB,BC,CP之和,求出t即可,注意P,D重合时也符合题意P所走的路径为AB,求出t即可.
(3)①当在上且时,根据,而,,求出CP=BP ,P为AB中点,即可求出;
②当在上且时,直接求出即可;
③当在上且时,过作于,根据△ADC∽△ACB,求出AD,即可求出AB,即可求出;
④当在上且时,,即可求出.
解:(1)中,,,,
,
故答案为:;
(2)如图,过作于,
平分,,
,,
,
设,则,
在中,,
,
解得,
,
;
当点与点重合时,点也在的角平分线上,
此时,;
综上所述,点恰好在的角平分线上,的值为或;
(3)分四种情况:
①如图,当在上且时,
,而,,
,
,
是的中点,即,
;
②如图,当在上且时,
;
③如图,当在上且时,过作于,则
,
中,,
,
;
④如图,当在上且时,,
.
综上所述,当或或或时,为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.
(1)求正方形ABCD的周长;
(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.
(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.
①求证:BH⊥DG;
②当AE=时,求线段BH的长(精确到0.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<0;③4a+b+c=0;④抛物线的顶点坐标为(2,b);⑤当x<1时,y随x增大而增大.其中结论正确的是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____(填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150° ④∠APC=120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在 Rt△ABC 中,∠A=90°,AB=AC,点 D、E 分别在边 AB、AC 上,AD=AE,连接DC,点 M、P、N 分别为 DE、DC、BC 的中点,
(1)观察猜想:如图 1 中,△PMN 是 三角形;
(2)探究证明:把△ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,BD, CE.判断△PMN 的形状,并说明理由;
(3)拓展延伸:将△ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请求△PMN 面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;②4a﹣2b+c>0;③方程ax2+bx+c﹣4=0有两个相等的实数根;④方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com