精英家教网 > 初中数学 > 题目详情

【题目】如图,中,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒.

备用图

1___________

2)若点恰好在的角平分线上,求此时的值:

3)在运动过程中,当为何值时,为等腰三角形.

【答案】(1)6;(2)的值为;(3)当时,为等腰三角形.

【解析】

1)根据勾股定理可以得到AC;

2)过,求出AD=2,,则,根据勾股定理求出CP,根据P所走的路径为ABBCCP之和,求出t即可,注意PD重合时也符合题意P所走的路径为AB求出t即可.

(3)①当上且时,根据,而,求出CP=BP PAB中点,即可求出;

②当上且时,直接求出即可;

③当上且时,过,根据△ADC△ACB,求出AD,即可求出AB,即可求出;

④当上且时,,即可求出.

解:(1中,

故答案为:

2)如图,过

平分

,则

中,

解得

当点与点重合时,点也在的角平分线上,

此时,

综上所述,点恰好在的角平分线上,的值为

3)分四种情况:

①如图,当上且时,

,而

的中点,即

②如图,当上且时,

③如图,当上且时,过,则

中,

④如图,当上且时,

综上所述,当时,为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C为O上一点,其中AB=4,AOC=120°,P为O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为(  )

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCDAEFG都是正方形,EG分别在ABAD边上,已知AB=4

1)求正方形ABCD的周长;

2)将正方形AEFG绕点A逆时针旋转θθ90°)时,如图2,求证:BE=DG

3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BEDG于点H,设BHAD的交点为M

求证:BH⊥DG

AE=时,求线段BH的长(精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC边上一点,EAD的中点,过点ABC的平行线交BE的延长线于F,且AF=CD,连接CF.

(1)求证:△AEF≌△DEB;

(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=2,与x轴的一个交点坐标(40),其部分图象如图所示,下列结论:①抛物线过原点;②ab+c04a+b+c=0④抛物线的顶点坐标为(2b);⑤当x1时,yx增大而增大.其中结论正确的是(  )

A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,BD平分∠ABC,且ADBDEAC的中点,AD6cmBD8cmBC16cm,则DE的长为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内的一点,且PA3PB4PC5,以BC为边在ABC外作BQC≌△BPA,连接PQ,则以下结论中正确有_____(填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB150° ④∠APC120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,在 Rt△ABC 中,∠A=90°,AB=AC,点 D、E 分别在边 AB、AC 上,AD=AE,连接DC,点 M、P、N 分别为 DE、DC、BC 的中点,

(1)观察猜想:如图 1 中,△PMN 三角形;

(2)探究证明:把△ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,BD, CE.判断△PMN 的形状,并说明理由;

(3)拓展延伸:将△ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请求△PMN 面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;4a﹣2b+c>0;③方程ax2+bx+c4=0有两个相等的实数根;④方程ax﹣1)2+bx﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案