【题目】如图 1,在 Rt△ABC 中,∠A=90°,AB=AC,点 D、E 分别在边 AB、AC 上,AD=AE,连接DC,点 M、P、N 分别为 DE、DC、BC 的中点,
(1)观察猜想:如图 1 中,△PMN 是 三角形;
(2)探究证明:把△ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,BD, CE.判断△PMN 的形状,并说明理由;
(3)拓展延伸:将△ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请求△PMN 面积的取值范围.
【答案】(1)等腰直角三角形;(2)见解析;(3)≤S△PMN≤.
【解析】
(1)由AB=AC,AD=AE可得BD=CE,由点 M、P、N 分别为 DE、DC、BC的中点可得MP=PN,由MP∥AC,NP∥AB可知∠MPD=∠ACD,∠PNC=∠ABC=45°,
进而可求出∠MPN=90°,即可证明△PMN是等腰直角三角形;(2)根据SAS可证明△ABD≌△ACE即可证明BD=CE,∠ABD=∠ACE,由点 M、P、N 分别为 DE、DC、BC的中点可得MP=PN,由MP∥AC,NP∥AB可知∠MPD=∠ECD,∠PNC=∠DBC,进而可证明∠PMN=90°,即可证明△PMN是等腰直角三角形;(3)由△PMN是等腰直角三角形可得S△PMN=BD2,根据三角形的三边关系即可得出△PMN 面积的取值范围.
(1)∵AB=AC,AD=AE
∴BD=CE
∵点 M、P、N 分别为 DE、DC、BC 的中点
∴MP=EC,NP=BD,MP∥AC,NP∥AB
∴MP=NP
∴△PMN 是等腰三角形
∵∠A=90°,AB=AC
∴∠ABC=∠ACB=45°
∵MP∥AC,NP∥AB
∴∠MPD=∠ACD,∠PNC=∠ABC=45°
∵∠DPN=∠PNC+∠DCB=45°+∠ACB﹣∠ACB=90°﹣∠ACD
∴∠MPN=∠MPD+∠DPN=∠ACD+90°﹣∠ACD=90°
∴△PMN 是等腰直角三角形
(2)∵∠BAC=∠DAE=90°
∴∠BAD=∠CAE
∵AB=AC,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE,∠ABD=∠ACE
∵点 M、P、N 分别为 DE、DC、BC 的中点
∴MP=EC,NP=BD,MP∥EC,NP∥DB
∴MP=NP
∴△PMN 是等腰三角形
∵∠A=90°,AB=AC
∴∠ABC=∠ACB=45°
∵MP∥AC,NP∥AB
∴∠MPD=∠ECD,∠PNC=∠DBC
∵∠DPN=∠PNC+∠DCB=∠DBC+∠DCB=∠DBC+∠ACB﹣∠ACD=∠DBC+45°﹣∠ACD
∴∠MPN=∠MPD+∠DPN=∠DBC+45°﹣∠ACD+∠ACD+∠AC E=∠DBC+45°+∠ABD=∠ABC+45°=90°
∴△PMN 是等腰直角三角形
(3)∵△PMN 是等腰直角三角形
∴S△PMN=PN2=×(BD)2=BD2.
∵将△ADE 绕点 A 在平面内自由旋转,
∴当点 D 在 AB 上时,BD 最短,此时 BD=AB﹣AD=6
当点 D 在 BA 的延长线上时,BD 最长,此时 BD=AB+AD=14
∴≤S△PMN≤.
科目:初中数学 来源: 题型:
【题目】如图,P为反比例函数(x<0)在第三象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y=-x+4的图像于点A、B.若AO、BO分别平分∠BAP,∠ABP ,则k的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒.
备用图
(1)___________;
(2)若点恰好在的角平分线上,求此时的值:
(3)在运动过程中,当为何值时,为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系 xOy 中,抛物线y=ax2+bx+c 上部分点的横、纵坐标间的对应值如表:
则下列结论正确的是( )
A. 抛物线的开口向下
B. 抛物线的顶点坐标为(2.5,﹣8.75)
C. 当 x>4 时,y 随 x 的增大而减小
D. 抛物线必经过定点(0,﹣5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,已知抛物线 L1:y=﹣x2+2x+3 与 x 轴交于 A,B 两点(点 A在点 B 的左侧),与 y 轴交于点 C,在 L1 上任取一点 P,过点 P 作直线 l⊥x 轴, 垂足为D,将 L1 沿直线 l 翻折得到抛物线L2,交 x 轴于点 M,N(点 M 在点 N 的左侧).
(1)当 L1 与 L2 重合时,求点 P 的坐标;
(2)当点 P 与点 B 重合时,求此时 L2 的解析式;并直接写出 L1 与 L2 中,y 均随x 的增大而减小时的 x 的取值范围;
(3)连接 PM,PB,设点 P(m,n),当 n=m 时,求△PMB 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.
(1)求证:BE=CF;
(2)若∠E=40°,求∠AGB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知:在中,,,直线经过点,直线,直线,垂足分别为点、.证明:.
(2)如图(2),将(1)中的条件改为:在中,,、、三点都在直线上,并且有.请直接写出线段、和之间的数量关系.
(3)拓展与应用:如图(3),、是、、三点所在直线上的两动点、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,试证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△OAB 中,∠A=90°,∠ABO=30°,OB=,边 AB的垂直平分线 CD 分别与 AB、x 轴、y 轴交于点 C、E、D.
(1)求点 E的坐标;
(2)求直线 CD的解析式;
(3)在直线 CD上找一点Q使得三角形O,D,Q为等腰三角形,并求出所有的Q点;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:
(1)求该区抽样调查人数;
(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;
(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com