精英家教网 > 初中数学 > 题目详情

【题目】如图,P为反比例函数(x<0)在第三象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y=-x+4的图像于点A、B.AO、BO分别平分∠BAP,∠ABP ,则k的值为___________

【答案】8

【解析】分析: BFx轴,OE⊥ABCQAP,易证BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.

详解: BFx轴,OEABCQAP;设P点坐标(n),

直线AB函数式为y=-x+4,PBy轴,PAx轴,

∴∠PBA=∠PAB=45°,

PA=PB

P点坐标(-n,-),

OD=CQ=n

AD=AQ+DQ=n+4;

x=0时,y=-x+4=4,

OC=DQ=4,GE=OE=OC=2

同理可证:BG=BF=PD=

BE=BG+EG=+2

∵∠APB=90°,

∴∠PAB+∠PBA=90°.

AOBO分别平分∠BAP,∠ABP

∴∠OBE+∠OAE=45°,

∵∠DAO+∠OAE=45°,

∴∠DAO=∠OBE

BOEAOD中,

∵∠DAO=∠OBE,

BEO=∠ADO=90°,

∴△BOE∽△AOD

,

整理得:nk+2n2=8n+2n2

化简得:k=8;

故答案为:8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将连续的奇数1,3,5,7,9…排成如下的数表:

(1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.

(1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.

(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.

①求证:CD=2AE.

②若AE+CD=DE,求k.

③设点F的坐标为(a,b),当ODE为等腰三角形时,求(a+b)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N关于x轴对称,连接AN、BN.

(1)①求A、B的坐标;②求证:∠ANM=∠BNM;
(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则AB 两点之间的距离 AB= ,线段 AB 的中点表示的数为 .

【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t(t>0).

【综合运用】(1) 填空:

①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______

②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.

(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB

(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.

时间t(天)

0

5

10

15

20

25

30

日销售量
y1(百件)

0

25

40

45

40

25

0


(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;
(2)求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy,双曲线y(x>0)与直线ykxk的交点为点A(m,2).

(1) k的值;

(2) x>0时,直接写出不等式kx-k ≤的解集:_

(3) 设直线ykxky轴交于点B,若Cx轴上一点,且满足ABC的面积是4,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km.

(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.

(2)求这个最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.

月份n(月)

1

2

成本y(万元/件)

11

12

需求量x(件/月)

120

100


(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.

查看答案和解析>>

同步练习册答案