精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:大家知道是无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分。又例如:因为,,所以的整数部分为2,小数部分为,请解答下列问题:

(1) 如果的小数部分为a的整数部分为b,求的值;

(2)已知,其中x是整数,且,求的值.

【答案】1;(216+.

【解析】

1)首先估算出的范围,可得ab的值,然后代入计算即可;

2)首先估算出的范围,然后可得的整数部分为12,小数部分为,再根据,可求出xy的值,然后代入计算即可.

解:(1)∵

b=4

2)∵

的整数部分为2

的整数部分为12,小数部分为

,其中x是整数,且

2x=12,即x=6

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径的画弧,分别交BABC于点MN;再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BPAC于点D,则下列说法中不正确的是()

A. BP是∠ABC的平分线B. AD=BDC. D. CD=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知mnm<n)是关于x的方程(xa)(xb)=2的两根,若a<b,则下列判断正确的是

A. a<m<b<n B. m<a<n<b

C. a<m<n<d D. m<a<b<n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题背景)

在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).

(发现)

如图1,当n=1时,易证得AE+AF=AC;

(类比)

如图2,过点CCHAD于点H,

(1)当n=2时,求证:AE=2FH;

(2)当n=3时,试探究AE+3AFAC之间的等量关系式;

(延伸)

60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ之间的等量关系式(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC,AB=CB,ABC=90°,FAB延长线上一点,EBC,AE=CF.

(1)求证:RtABERtCBF

(2)若∠AEC=105°,求∠BCF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;

(2)等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点O,∠BAC80°,则∠BOC的度数是( )

A.130°B.120°C.100°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等边三角形,D为边AC的中点,AEECBDEC

1)求证:BDA≌△CEA

2)请判断ADE是什么三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC 中,∠BAC=120°AB=AC=4ADBC,延长AD至点E,使得AE=2AD,连接BE.

1)求证: ABE 为等边三角形;

2)将一块含 60°角的直角三角板 PMN 如图放置,其中点 P 与点 E 重合,且∠NEM=60°,边 NE AB 交于点 G,边 ME AC 交于点 F. 求证:BG=AF

查看答案和解析>>

同步练习册答案