精英家教网 > 初中数学 > 题目详情
4.如图所示,圆锥形漏斗的侧面积为60π,它的底面半径OB=6cm,则这个圆锥形漏斗的高OC是8cm.

分析 根据题意和扇形的面积公式求出圆锥的母线长,根据勾股定理计算即可.

解答 解:∵圆锥的底面半径OB=6cm,
∴它的底面周长=12πcm,
由题意得,$\frac{1}{2}$×12π×AC=60π,
解得AC=10cm,
∴OC=$\sqrt{A{C}^{2}-O{A}^{2}}$=8cm.
故答案为:8.

点评 本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.某螃蟹养殖基地为了估计所养螃蟹的数量,从中捕捉了100只螃蟹,在每只身上做好记号后再放回池塘,过一段时间后,再从中捕捉了100只螃蟹,发现有5只有记号,请你估计该基地共有螃蟹多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.抗震期间,某个别商贩将每件a元的食品提价20%后销售,当地政府及时采取措施,使每件食品的价格在涨价后下降15%,那么降价后每件的价格是(  )元.
A.1.2aB.1.02aC.aD.0.18

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(-1)=2+(-1)=1,2#(-1)=2×(-1)=-2.以下结论:
①[2+(-5)]#(-2)=6;
②(a*b)#c=c(a*b);
③a*(b#a)=(a*b)#a;
④若x>0,且满足(1*x)#(1#x)=1,则x=$\frac{\sqrt{5}-1}{2}$.
正确的是①②④(填序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,要使输出值y大于200,则输入的正整数n最小是41.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知a2+b2=5,a+b=3,则a-b的值为(  )
A.1B.-2C.±1D.±2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m<-3;④3a+b>0.其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.
如图,抛物线y=x2-2x-3与x轴交于点A,B,与y轴交于点D,以AB为直径,在x轴上方作半圆交y轴于点C,半圆的圆心记为M,此时这个半圆与这条抛物线x轴下方部分组成的图形就称为“蛋圆”.
(1)直接写出点A,B,C的坐标及“蛋圆”弦CD的长;
A(-1,0),B(3,0),C(0,$\sqrt{3}$),CD=3+$\sqrt{3}$;
(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
①求经过点C的“蛋圆”切线的解析式;
②求经过点D的“蛋圆”切线的解析式;
(3)由(2)求得过点D的“蛋圆”切线与x轴交点记为E,点F是“蛋圆”上一动点,试问是否存在S△CDE=S△CDF,若存在请求出点F的坐标;若不存在,请说明理由;
(4)点P是“蛋圆”外一点,且满足∠BPC=60°,当BP最大时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算:$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{10}+\sqrt{9}}$=$\sqrt{10}$-1.

查看答案和解析>>

同步练习册答案