【题目】已知方程6x-9=10x-45与方程3a-1=3(x+a)-2a的解相同
(1)求这个相同的解;
(2)求a的值;
(3)若[m]表示不大于m的最大整数,求[-2]的值
科目:初中数学 来源: 题型:
【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.
问:(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2018次相遇在___边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB
(1)OA= cm , OB= cm;
(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.
①当t为何值时,2OP﹣OQ=3;
②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和“抢红包”所持态度情况进行调查,并将调查结果绘成了条形统计图和扇形统计图.
(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?并估计该企业“从不(抢红包)”的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数
B.中位数
C.众数
D.方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,OD,OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.
解:∵OD平分∠AOC,OE平分∠BOC(已知),
∴∠AOC=2∠AOD,∠BOC=2________( ),
∵∠AOD=40°,∠______=25°(已知),
∴∠AOC=2×40°=80°(等量代换),∠BOC=2×_____°=______°,
∴∠AOB=________°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com