【题目】如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2018次相遇在___边上.
【答案】AD
【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为3:1,由题意知:
①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=,在CD边相遇;
②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AD边相遇;
③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AB边相遇;
④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在BC边相遇;
⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在CD边相遇;
…
因为2018=504×4+2,所以它们第2018次相遇在边AD上.
故答案为:AD
科目:初中数学 来源: 题型:
【题目】如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12
B.24
C.12
D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N.
(1)观察图1,直接写出∠AEM与∠BNE的关系是 ;(不用证明)
(2)如图1,当M、N都分别在AB、BC上时,可探究出BN与AM的关系为: ;(不用证明)
(3)如图2,当M、N都分别在AB、BC的延长线上时,(2)中BN与AM的关系式是否仍然成立?若成立,请说明理由:若不成立,写出你认为成立的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( ).
A. 形状不变,大小扩大了3倍 B. 形状不变,向右平移了3个单位
C. 形状不变,向上平移了3个单位 D. 三角形被纵向拉伸为原来的3倍
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知方程6x-9=10x-45与方程3a-1=3(x+a)-2a的解相同
(1)求这个相同的解;
(2)求a的值;
(3)若[m]表示不大于m的最大整数,求[-2]的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为( )
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线与轴交于、两点,与直线交于点.
(1)求, 的值;
(2)已知点,点关于原点对称,现将线段沿轴向上平移 (>0)个单位长度.若线段与抛物线有两个不同的公共点,试求的取值范围;
(3)利用尺规作图,在该抛物线上作出点,使得,并简要说明理由.(保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列几个算式:①a4·a4=2a4;②x3+x2=x5;③a2·a3·a=a5;④a4+a4=a8.其中计算正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com