精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,EF分别是BCAD边上的点,且AE=CF,若ACEF,试判断四边形AECF的形状,请说明理由.

【答案】四边形AECF是菱形,理由见解析.

【解析】

由矩形的性质得出∠B=D=90°AB=CDAD=BCADBC,由HL证明RtABERtCDF,即可BE=DF,得出CE=AF,由CEAF,证出四边形AECF是平行四边形,再由ACEF,即可得出四边形AECF是菱形.

四边形AECF是菱形,

理由如下:∵四边形ABCD是矩形,∴∠B=D=90°,AB=CDAD=BCADBC

RtABERtCDF中,

RtABERtCDF(HL)

BE=DF

BC=AD

CE=AF

CEAF

∴四边形AECF是平行四边形,

又∵ACEF

∴四边形AECF是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.

(1)求m的值及顶点D的坐标;

(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA,且PA=NA时,求此时点P的坐标;

(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接2022年冬奥会,鼓励更多的大学生参与到志愿服务中,甲、乙两所学校组织了志愿服务团队选拔活动,经过初选,两所学校各有300名学生进入综合素质展示环节,为了了解这些学生的整体情况,从两校进入综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.

a.甲学校学生成绩的频数分布直方图如图(数据分成6组:).

b.甲学校学生成绩在这一组是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:

平均数

中位数

众数

优秀率

83.3

84

78

46%

根据以上信息,回答下列问题:

1)甲学校学生,乙学校学生的综合素质展示成绩同为82分,这两人在本校学生中综合素质展示排名更靠前的是________(填“”或“”);

2)根据上述信息,推断________学校综合素质展示的水平更高,理由为:__________________________

(至少从两个不同的角度说明推断的合理性).

3)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,预估甲学校分数至少达到________分的学生才可以入选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做整点.例如:P10)、Q2,﹣2)都是整点.抛物线ymx24mx+4m2m0)与x轴交于点AB两点,若该抛物线在AB之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是(  )

A. m1B. m≤1C. 1m≤2D. 1m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在RtABC中,∠B=90°,∠ACB=30°,点DBC边上一动点,以AD为边,在AD的右侧作等边三角形ADE

1)当AD平分∠BAC时,如图1,四边形ADCE    形;

2)过EEFACF,如图2,求证:FAC的中点;

3)若AB=2

DBC的中点时,过点EEGBCG,如图3,求EG的长;

DB点运动到C点,则点E所经过路径长为    (直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB20,连接BD,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC

1)求证:AECE

2)若sinABD,当点P在线段BC上时,若BP8,求PEC的面积;

3)若∠ABC45°,当点P在线段BC的延长线上时,请求出PEC是等腰三角形时BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+cabc为常数,且a≠0)中的xy的部分对应值如表:

x

1

0

1

3

y

1

3

5

3

下列结论错误的是(  )

A.ac0

B.x1时,y的值随x的增大而减小

C.3是方程ax2+b1x+c0的一个根

D.当﹣1x3时,ax2+b1x+c0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca0)图象如图,下列结论:①abc>0②2a+b=0m1时,a+b>am2+bm④a-b+c>0ax12+bx1=ax22+bx2,且x1x2x1+x2=2.其中正确的有(

A.B.C.①②D.②③

查看答案和解析>>

同步练习册答案