【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论错误的是( )
A.ac<0
B.当x>1时,y的值随x的增大而减小
C.3是方程ax2+(b﹣1)x+c=0的一个根
D.当﹣1<x<3时,ax2+(b﹣1)x+c>0
【答案】B
【解析】
利用表中各对应点的特征和抛物线的对称性得到c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),所以抛物线开口向上,则可对A进行判断;根据二次函数的性质可对B进行判断;利用抛物线过点(-1,-1),(3,3)得到抛物线与直线y=x相交于点(-1,-1),(3,3),则可对C进行判断;利用函数图象可得当-1<x<3时,ax2+bx+c>x,则可对D进行判断.
解:∵抛物线经过点(0,3)和(3,3),
∴c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),
∴抛物线开口向上,
∴a<0,
∴ac<0,所以A选项的结论正确;
当x>时,y的值随x的增大而减小,所以B选项的结论错误;
∵抛物线过点(﹣1,﹣1),(3,3),
即抛物线与直线y=x相交于点(﹣1,﹣1),(3,3),
∴3和﹣1是方程ax2+bx+c=x的根,所以C选项的结论正确;
当﹣1<x<3时,ax2+bx+c>x,
即ax2+(b﹣1)x+c>0,所以D选项的结论正确.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=10,求AE的长;
(3)若△CDE的面积是△OBF面积的,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°.∠ABC的平分线交AC于点O,以点O为圆心,OC为半径.在△ABC同侧作半圆O.
(1)求证:AB与⊙O相切;
(2)若AB=5,AC=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售每台进价分别为400元、340元的A、B两种型号的电风扇,下表是该型号电风扇近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 3600元 |
第二周 | 4台 | 10台 | 6200元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若该商场准备用不多于1.14万元的金额再采购这两种型号的电风扇共30台,假设售价不变,那么商场应采用哪种采购方案,才能使得当销售完这些风扇后,商场获利最多?最多可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 某网店销售一种产品.这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/件市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示:
(1)当12≤x≤18时,求y与x之间的函数关系式;
(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,点是内一个动点,且满足,当线段取最小值时,记,线段上一动点绕着点顺时针旋转得到点,且满足 ,则的最小值为 _____________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com