精英家教网 > 初中数学 > 题目详情

【题目】将一副三角板和一张对边平行的纸条按如图的方式摆放,∠A=∠DEF90°,∠EDF45°,∠ABC30°,点EF均在边AB上,点D在纸条的一边上,若边BC与纸条的另一边重合,则∠α的度数是(  )


A.15°B.22C.30°D.45°

【答案】A

【解析】

根据直角三角形两锐角互余,求出∠ACB的度数,根据平行线的性质,求出∠DMA的度数,根据多边形内角和公式求出四边形DMAE的度数,分别减去其它三个角,求出∠MDE的度数,最后减去∠FDE的度数,即可解决.

解:如图,延长CA与纸条交于点M


∵∠BAC=90°,∠ABC=30°

∴∠ACB=60°

∵纸条的对边平行,

∴∠ACB+DMA=180°

∴∠DMA=180°-60°=120°

∵四边形DMAE的内角和=4-2×180°=360°

∴∠MDB=360°-90°-90°-120°=60°

∵∠EDF45°

∴∠α=60°-45°=15°.

故本题答案为:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25/个,乙种型号水杯进价为45/个,下表是前两月两种型号水杯的销售情况:

时间

销售数量(个)

销售收入(元)(销售收入=售价×销售数量)

甲种型号

乙种型号

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙两种型号水杯的售价;

2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出wa的函数关系式,并求出第三月的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小吴家准备购买一台电视机,小吴将收集到的某地区ABC三种品牌电视机销售情况的有关数据统计如下:

根据上述三个统计图,请解答:

120142019年三种品牌电视机销售总量最多的是   品牌,月平均销售量最稳定的是   品牌.

22019年其他品牌的电视机年销售总量是多少万台?

3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAB为⊙O的直径,AB=10AC=6,连结OC,弦AD分别交OCBC于点EF,其中点EAD的中点.

1)求证:∠CAD=CBA

2)求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM.已知CD44.5m

(1)求楼间距MN

(2)B号楼共30层,每层高均为3m,则点C位于第几层?(参考数据:tan30°≈0.58sin55.7°≈0.83cos55.7°≈0.56tan55.7°≈1.47)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON =ACB = 90°AC = BCAB =5ABC顶点AC分别在ONOM上,点DAB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数的图象与轴分别交于点,且过点.

1)求二次函数表达式;

2)若点为抛物线上第一象限内的点,且,求点的坐标;

3)在抛物线上(下方)是否存在点,使?若存在,求出点轴的距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.点从点出发,以每秒5个单位长度的速度沿向终点运动,同时点从点出发,以相同的速度沿向终点运动,过点于点,连结,以为邻边作矩形,当点运动到终点时,整个运动停止,设矩形重叠部分图形的面积为,点的运动时间为秒.

1)①的长为

②用含的代数式表示线段的长为

2)当的长度为10时,求的值;

3)求的函数关系式;

4)当过点和点的直线垂直于的一边时,直接写出的值.

查看答案和解析>>

同步练习册答案