分析 (1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;
(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;
(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得.
解答 (1)证明:过F作FM⊥CD,垂足为M,连接GE,![]()
∵CD∥AB,
∴∠AEG=∠MGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠AEH=∠FGM;
(2)证明:在△HDG和△AEH中,
∵四边形ABCD是正方形,
∴∠D=∠A=90°,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△HDG和△AEH中,
$\left\{\begin{array}{l}{HG=HE}\\{DG=AH}\end{array}\right.$,
∴Rt△HDG≌△AEH(HL),
∴∠DHG=∠AEH,
∴∠DHG+∠AHE=90°
∴∠GHE=90°,
∴菱形EFGH为正方形;
(3)解:过F作FM⊥CD于M,
在△AHE与△MFG中,$\left\{\begin{array}{l}{∠A=∠M=90°}\\{∠AEH=∠FGM}\\{HE=FG}\end{array}\right.$,
∴△AHE≌△MFG,
∴MF=AH=x,
∵DG=2x,
∴CG=6-2x,
∴y=$\frac{1}{2}$CG•FM=$\frac{1}{2}$•x•(6-2x)=-(x-$\frac{3}{2}$)2+$\frac{9}{4}$,
∵a=-1<0,∴当x=$\frac{3}{2}$时,y最大=$\frac{9}{4}$.
点评 本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com