【题目】如图,在正方形ABCD中,点E,F分别在边AD,CD上,
(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3;
②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
【答案】(1)①详见解析;②12;(2).
【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
解:(1)①∵四边形ABCD是正方形,
∴AB=BC=AD=6,∠BAD=∠BCD=90°,
∵点E是中点,
∴AE=AD=3,
在Rt△ABE中,根据勾股定理得,BE==3,
在△BAE和△BCF中,
∴△BAE≌△BCF(SAS),
∴BE=BF,
∴BE=BF=3;
②如图2,连接BD,
在Rt△ABC中,AC=AB=6,
∴BD=6,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△AEM∽△CMB,
∴,
∴,
∴AM=AC=2,
同理:CN=2,
∴MN=AC﹣AM﹣CN=2,
由①知,△ABE≌△CBF,
∴∠ABE=∠CBF,
∵AB=BC,∠BAM=∠BCN=45°,
∴△ABM≌△CBN,
∴BM=BN,
∵AC是正方形ABCD的对角线,
∴AB=AD,∠BAM=∠DAM=45°,
∵AM=AM,
∴△BAM≌△DAM,
∴BM=DM,
同理:BN=DN,
∴BM=DM=DN=BN,
∴四边形BMDN是菱形,
∴S四边形BMDN=BD×MN=×6×2=12;
(2)如图3,设DH=a,
连接BD,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵DH⊥BH,
∴∠BHD=90°,
∴点B,C,D,H四点共圆,
∴∠DBH=∠DCH=22.5°,
在BH上取一点G,使BG=DG,
∴∠DGH=2∠DBH=45°,
∴∠HDG=45°=∠HGD,
∴HG=HD=a,
在Rt△DHG中,DG=HD=a,
∴BG=a,
∴BH=BG+HG=A+A=(+1)a,
∴.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,长方形 OABC,点 B 的坐标为(3,8),点 A、C 分别在坐标轴上,D 为 OC 的中点.
(1)在 x 轴上找一点 P,使得 PD+PB 最小,则点 P 的坐标为 ;
(2)在 x 轴上找一点 Q,使得|QD-QB|最大,求出点 Q 的坐标并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生“自主学习、合作交流” 的情况,对某班部分同学进行了一段时间的跟踪调查,将调查结果(A:特别好;B:好;C:一般;D:较差)绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,求 类所占圆心角的度数;
(3)学校想从被调查的 类(1名男生2名女生)和D类(男女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树形图或列表的方法求所选的两位同学恰好是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.
(1)求证:∠ABE+∠C﹣∠E=180°.
(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.
(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_____秒时,△BCA与点P、N、B为顶点的三角形全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M在线段BC上,点E和N在线段AC上,EM∥AB,BE和MN分别平分∠ABC和∠EMC.下列结论:①∠MBN=∠MNB;②∠MBE=∠MEB;③MN∥BE.其中正确的是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com