12£®Ä³ÓÎÓ¾³ØÄÚÏÖ´æË®2000m3£¬ÒÑÖª¸ÃÓÎÓ¾³ØµÄÅÅË®ËÙ¶ÈÊǹàË®ËٶȵÄ2±¶£®¼ÙÉèÔÚ»»Ë®Ê±ÐèÒª¾­Àú¡°ÅÅË®-ÇåÏ´-¹àË®¡±µÄ¹ý³Ì£¬ÆäÖÐÓÎÓ¾³ØÄÚÊ£ÓàµÄË®Á¿ym3Ó뻻ˮʱ¼äthÖ®¼äµÄº¯Êý¹ØÏµÈçͼËùʾ£®¸ù¾ÝͼÏó½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬ÇóÅÅË®µÄËٶȼ°ÇåÏ´¸ÃÓÎÓ¾³ØËùÓõÄʱ¼ä£»
£¨2£©Çó¹àË®¹ý³ÌÖеÄym3Ó뻻ˮʱ¼äthÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ö×Ô±äÁ¿µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉͼÏó¿ÉÖª£¬¸ÃÓÎÓ¾³Ø5¸öСʱÅÅË®2000£¨m3£©£¬¸ù¾ÝËٶȹ«Ê½Çó³ö¼´¿É£¬Çó³ö¹àË®µÄËٶȺÍʱ¼ä¼´¿ÉÇó³öÇåÏ´¸ÃÓÎÓ¾³ØËùÓõÄʱ¼ä£»
£¨2£©Éè¹àË®¹ý³ÌÖеÄy£¨m3£©Ó뻻ˮʱ¼ät£¨h£©Ö®¼äµÄº¯Êý¹ØÏµÊ½ÊÇy=kt+b£¬½«£¨11£¬0£©£¬£¨21£¬1890£©´úÈëy=kt+bÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÓÉͼÏó¿ÉÖª£¬¸ÃÓÎÓ¾³Ø5¸öСʱÅÅË®2000£¨m3£©£¬
¡à¸ÃÓÎÓ¾³ØÅÅË®µÄËÙ¶ÈÊÇ2000¡Â5=400£¨m3/h£©£¬
ÓÉÌâÒâµÃ¸ÃÓÎÓ¾³Ø¹àË®µÄËÙ¶ÈÊÇ400¡Á0.5=200£¨m3/h£©£¬
Óɴ˵ùàË®2000m3ÐèÒªµÄʱ¼äÊÇ2000¡Â200=10£¨h£©£¬
¡àÇåÏ´¸ÃÓÎÓ¾³ØËùÓõÄʱ¼äÊÇ11-5=6£¨h£©£¬
£¨2£©Éè¹àË®¹ý³ÌÖеÄy£¨m3£©Ó뻻ˮʱ¼ät£¨h£©Ö®¼äµÄº¯Êý¹ØÏµÊ½ÊÇy=200t+b£®
½«£¨11£¬0£©£¬´úÈëy=200t+b£¬µÃb=-2200£¬
¼´¹àË®¹ý³ÌÖеÄy£¨m3£©Óëʱ¼ät£¨h£©Ö®¼äµÄº¯Êý¹ØÏµÊ½ÊÇy=200t-2200£¬£¨11£¼t¡Ü21£©£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉúÄÜ·ñ°Ñʵ¼ÊÎÊÌâת»¯³ÉÊýѧÎÊÌ⣬ÌâÄ¿±È½ÏµäÐÍ£¬ÊÇÒ»µÀ±È½ÏºÃµÄÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ1£¬ÒÑÖªÕý·½ÐÎABCD£¬µãE¡¢F¡¢G¡¢H·Ö±ðÔÚ±ßAB¡¢BC¡¢CD¡¢DAÉÏ£¬ÈôEG¡ÍFH£¬ÔòÒ×Ö¤£ºEG=FH£®
£¨1£©Èç¹û°ÑÌõ¼þÖеġ°Õý·½ÐΡ±¸ÄΪ¡°³¤·½ÐΡ±£¬²¢ÉèAB=2£¬BC=3£¨Èçͼ2£©£¬ÊÔ̽¾¿EG¡¢FHÖ®¼äÓÐÔõÑùµÄÊýÁ¿¹ØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Èç¹û°ÑÌõ¼þÖеġ°EG¡ÍFH¡±¸ÄΪ¡°EGÓëFHµÄ¼Ð½ÇΪ45¡ã¡±£¬²¢¼ÙÉèÕý·½ÐÎABCDµÄ±ß³¤Îª1£¬FHµÄ³¤Îª$\frac{\sqrt{5}}{2}$£¨Èçͼ3£©£¬ÊÔÇóEGµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Êý¼¯5¡¢7¡¢6¡¢6¡¢6µÄÖÚÊýΪ6£¬Æ½¾ùÊýΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖªÖ±Ïßy=-$\frac{1}{2}$x+2ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬Å×ÎïÏßy=-$\frac{1}{2}$x2+bx+c¾­¹ýA£¬BÁ½µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¶¯µãC£¬E´ÓÔ­µãOͬʱ³ö·¢£¬CÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØOB·½ÏòÔ˶¯£¬EÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØOA·½ÏòÔ˶¯£¬Ô˶¯Ê±¼äÊÇtÃ루0£¼t£¼2£©£®¹ýEµã×÷DE¡ÍOA½»ABÓÚD£¬C¹ØÓÚDEµÄ¶Ô³ÆµãΪF£¬Á¬½ÓCD£¬CE£¬FD£¬FE£¬ËıßÐÎCDEFÓë¡÷ABOÖØµþ²¿·ÖµÄÃæ»ýΪS£®
¢ÙÇóSÓëtµÄº¯Êý¹ØÏµÊ½£»
¢Úµ±¡÷BCDΪֱ½ÇÈý½ÇÐÎʱ£¬Ö±½Óд³ötµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³Ð£ÓÐA¡¢B¡¢CÈý¸ö²ÍÌü£¬¼×£®ÒÒÁ½ÃûѧÉú¸÷×ÔËæ»úÑ¡ÔñÆäÖеÄÒ»¸ö²ÍÌüÓòͣ¬Ôò¼×£®ÒÒÁ½ÃûѧÉúÔÚͬһ¸ö²ÍÌüÓò͵ĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªx=1ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+n=0µÄÒ»¸ö¸ù£¬Ôòm2+2mn+n2µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚÓÐÀíÊý0£¬-5£¬-$\frac{2}{3}$£¬|-2|ÖУ¬×îСµÄÊýÊÇ£¨¡¡¡¡£©
A£®-$\frac{2}{3}$B£®-5C£®0D£®|-2|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺
£¨1£©|-3|+£¨¦Ð+1£©0-$\sqrt{9}$+$\root{3}{8}$£»
£¨2£©£¨-$\frac{1}{4}$£©-1+£¨$\sqrt{3}$£©2-|1-$\sqrt{2}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆËã
£¨1£©$\sqrt{4}$-£¨$\sqrt{8}$£©2+$\root{3}{27}$£»
£¨2£©$\sqrt{£¨-2£©^2}$-|2-$\sqrt{2}$|-$\sqrt{2}$£®
£¨3£©3$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$
£¨4£©4$\sqrt{5}$+$\sqrt{45}$-$\sqrt{8}$+4$\sqrt{2}$
£¨5£©$\sqrt{18}$+£¨$\sqrt{2}$+1£©-1+£¨-2£©-2
£¨6£©$\sqrt{25}-\root{3}{-27}+\sqrt{{{£¨-\frac{1}{2}£©}^2}}$£»
£¨7£©$£¨\sqrt{2}+\sqrt{3}£©£¨\sqrt{2}-\sqrt{3}£©$
£¨8£©$\sqrt{12}-3¡Á\sqrt{\frac{1}{3}}+\root{3}{-8}-{£¨{¦Ð+1}£©^0}¡Á\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸