【题目】如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP⊥AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是( )
A.
B.
C.
D.
科目:初中数学 来源: 题型:
【题目】图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.
(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;
(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=2+ .
(1)写出自变量x的取值范围:;
(2)请通过列表,描点,连线画出这个函数的图象: ①列表:
x | … | ﹣8 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | 8 | … |
y | … |
| 1 |
| 0 | ﹣2 | ﹣6 | 10 | 6 | 4 |
| 3 |
| … |
②描点(在下面给出的直角坐标系中补全表中对应的各点);
③连线(将图中描出的各点用平滑的曲线连接起来,得到函数的图象).
(3)观察函数的图象,回答下列问题: ①图象与x轴有个交点,所以对应的方程2+ =0实数根是;
②函数图象的对称性是 .
A、既是轴对称图形,又是中心对称图形
B、只是轴对称图形,不是中心对称图形
C、不是轴对称图形,而是中心对称图形
D、既不是轴对称图形也不是中心对称图形
(4)写出函数y=2+ 与y= 的图象之间有什么关系?(从形状和位置方面说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题。
(1)问题发现:
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)拓展探究:
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)问题解决:
当正方形CDEF旋转到B、E、F三点共线时候,直接写出线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线;
(2)若BC=2 ,E是半圆 上一动点,连接AE、AD、DE. 填空:
①当 的长度是时,四边形ABDE是菱形;
②当 的长度是时,△ADE是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com