精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线;
(2)若BC=2 ,E是半圆 上一动点,连接AE、AD、DE. 填空:
①当 的长度是时,四边形ABDE是菱形;
②当 的长度是时,△ADE是直角三角形.

【答案】
(1)证明:连接OD,如图,

∵∠BAC=90°,点D为BC的中点,

∴DB=DA=DC,

∵∠B=60°,

∴△ABD为等边三角形,

∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,

而OA=OD,

∴∠ODA=∠OAD=30°,

∴∠ODB=60°+30°=90°,

∴OD⊥BC,

∴BD是⊙O的切线;


(2) π; π或π
【解析】(2)解:①∵△ABD为等边三角形, ∴AB=BD=AD=CD=
在Rt△ODC中,OD= CD=1,
当DE∥AB时,DE⊥AC,
∴AD=AE,
∵∠ADE=∠BAD=60°,
∴△ADE为等边三角形,
∴AD=AE=DE,∠ADE=60°,
∴∠AOE=2∠ADE=120°,
∴AB=BD=DE=AE,
∴四边形ABDE为菱形,
此时 的长度= = π;
②当∠ADE=90°时,AE为直径,点E与点F重合,此时 的长度= =π;
当∠DAE=90°时,DE为直径,∠AOE=2∠ADE=60°,此时 的长度= = π,
所以当 的长度为 π或π时,△ADE是直角三角形.
故答案为 π; π或π.

(1)连接OD,如图,利用斜边上的中线性质得DB=DA=DC,则可判断△ABD为等边三角形得到∠DAB=∠ADB=60°,∠DAC=∠C=30°,然后计算出∠ODB=90°,从而根据切线的判定定理可判定BD是⊙O的切线;(2)解:①利用△ABD为等边三角形得到AB=BD=AD=CD= ,则可计算出OD= CD=1,当DE∥AB时,DE⊥AC,先证明△ADE为等边三角形,再证明四边形ABDE为菱形,然后利用弧长公式计算此时 的长度;②讨论:当∠ADE=90°时,AE为直径,利用弧长公式可计算出此时 的长度;当∠DAE=90°时,DE为直径,利用圆周角定理得到∠AOE=2∠ADE=60°,然后利用弧长公式可计算出此时 的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形中,是中心对称图形,但不是轴对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP⊥AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差SOAC﹣SBAD为(
A.36
B.12
C.6
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)经过A、B、C三点,点A、C的坐标分别是(0,4)、(﹣1,0).

(1)求此抛物线的解析式;
(2)点P是第一象限内抛物线上的一动点,当△ABP的面积最大时,求出此时P的坐标及面积的最大值;
(3)若G为抛物线上的一动点,F为x轴上的一动点,点D坐标为(1,4),点E坐标为(1,0),当D、E、F、G构成平行四边形时,请直接写出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为6的等边△ABC内接于⊙O.
(1)求⊙O半径;
(2)求 的长和弓形BC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是(
A.(4,0)
B.(0,5)
C.(5,0)
D.(5,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是(  )

A.10
B.8
C.4
D.2

查看答案和解析>>

同步练习册答案