【题目】如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=的抛物线与y轴交于点C(0,﹣3),与x轴交于A、B两点(点A在点B的左侧),AB=5
(1)求A、B两点的坐标及该抛物线对应的解析式;
(2)D为BC的中点,延长OD与抛物线在第四象限内交于点E,连结AE、BE.
①求点E的坐标;
②判断ABE的形状,并说明理由;
(3)在x轴下方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上。
(1)如果点P在C、D之间运动时,试说明∠1+∠3=∠2;
(2)如果点P在直线l1的上方运动时,试探索∠1,∠2,∠3之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,试探索∠PAC,∠PBD,∠APB之间的关系又是如何? (直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
把代数式通过配凑等手段得到局部完全平方式,再进行有关计算和解题,这种解题方法叫做配方法.
如(1)用配方法分解因式:.
解:原式=
=
(2)M=,利用配方法求M的最小值.
解:M=
=
M有最小值1.
请根据上述材料,解决下列问题:
(1)在横线上添加一个常数,使之成为完全平方式:
(2)用配方法分解因式:
(3)若M=,求M的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=65°,∠C=35°,AD是△ABC的角平分线.
(1)求∠ADC的度数.
(2)过点B作BE⊥AD于点E,BE延长线交AC于点F.求∠AFE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y1=2x+2与直线 l2:y2=mx+8相交于点 P(2,b).
(1)求 b,m 的值;
(2)直接写出当 y1<y2 时,自变量 x 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com