精英家教网 > 初中数学 > 题目详情

【题目】如图,三个顶点的坐标分别为A(1,1),B(4,2),C(3,4);

(1)请画出将绕A点逆时针旋转90度得到的图形AB1C1

(2)请画出关于原点O成中心对称的图形

(3)x轴上找一点P,使PA+PB的值最小,请在图上标出点P,并直接写出点P的坐标______________

【答案】(1)见解析;(2)见解析;(3)图见解析,P(2,0)

【解析】

1)根据旋转的性质分别找出BC的对应点B1C1的位置,然后顺次连结;

2)根据中心对称的性质分别找出ABC的对应点A2B2C2的位置,然后顺次连结;

3)作点A关于x轴的对称点A’,连结A’Bx轴于点P,则点P即为所求,根据网格可得P点坐标.

解:(1) AB1C1如图所示:

2如图所示:

3)点P位置如图所示:

根据网格可知,P点坐标为:(20).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A在抛物线yx22x+2上运动.过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交ADEG两点,CEBG相交于点O

(1)求证:AG=DE.

(2)已知AB=4AD=5

①求的值.

②求四边形ABOE的面积与△BOC的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形BEFG的边BG在正方形ABCD的边BC上,连结AG,EC.

(1)说出AGCE的大小关系;

(2)图中是否存在通过旋转能够相互重合的两个三角形?若存在,请详细写出旋转过程;若不存在,请说明理由.

(3)请你延长AGCE于点M,判断AMCE的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x22x+c的顶点A在直线ly=x5上.

1)求抛物线顶点A的坐标;

2)设抛物线与y轴交于点B,与x轴交于点CDC点在D点的左侧),试判断ABD的形状;

3)在直线l上是否存在一点P,使以点PABD为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,在BC边上取一点P,在AC边上取一点D,连APPD,如果APD是等腰三角形且ABPCDP相似,我们称APDAC边上的等腰邻相似三角形”.

(1)如图2,ABCAB=AC,B=50°APDAB边上的等腰邻相似三角形,且AD=DP,∠PAC=BPD,则∠PAC的度数是___

(2)如图3,在ABC中,∠A=2C,在AC边上至少存在一个等腰邻相似APD”,请画出一个AC边上的等腰邻相似APD”,并说明理由;

(3)如图4,在RtABCAB=AC=2APDAB边上的等腰邻相似三角形,请写出AD长度的所有可能值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线ykx+4k≠0)交x轴于点A80),交y轴于点B

1k的值是 

2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.

①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求OCED的周长;

②当CE平行于x轴,CD平行于y轴时,连接DE,若CDE的面积为,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+ca>0)的对称轴为直线x=-1,与x轴的一个交点为(x10),且0<x1<1,下列结论:①9a-3b+c>0;②bc;③3a+c>0,其中正确结论两个数有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.

1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;

2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.

查看答案和解析>>

同步练习册答案