【题目】如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E,G两点,CE,BG相交于点O
(1)求证:AG=DE.
(2)已知AB=4,AD=5,
①求的值.
②求四边形ABOE的面积与△BOC的面积之比.
【答案】(1)证明见解析;(2)①=;②S四ABOE:S△OBC=23:25.
【解析】
(1)由平行四边形的性质和角平分线得出∠ABG=∠AGB,得出AG=AB,同理可证DE=DC,推出AG=DE即可解决问题.
(2)①求出EG的值,利用平行线的性质即可解决问题.
②连接OA.设△AEP的面积为S.求出四边形ABOE,△OBC的面积即可解决问题.
解:(1)∵BG平分∠ABC,CE平分∠BCD
∴∠ABG=∠CBG,∠BCE∠DCE
∵AD∥BC
∴∠CBG=∠AGB,∠BCE=∠CED
∴AB=AG,CD=DE
∵AB=CD
∴AG=DE;
(2)①∵AB=4,AD=5
∴AG=DG=4,AE=AD -DE=1,GD=AD -AG=1
∴EG=AD-AE-DG=3
∵AD∥BC
∴==
②连接AO,设S△OEG=9a,
∵AD∥BC,
∴△OEG∽△OCB
∴S△OEG :S△OBC=9:25
∴S△OBC=25a
∵AE:EG=1:3
∴S△OAE : S△OEG=1:3
∴S△OAE =3a
∴S△OAG=12a
∵S△OAB : S△OAG=OB:OG=5:3
∴S△OAB=20a
∴S四ABOE=S△OAB+S△OAE =23a
∴S四ABOE : S△OBC=23a : 25a=23:25
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2009在y轴的正半轴上,B1,B2,B3,…,B2009在二次函数第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都为等边三角形,计算出△A2008B2009A2009的边长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:
①abc>0;
②该抛物线的对称轴在x=﹣1的右侧;
③关于x的方程ax2+bx+c+1=0无实数根;
④≥2.
其中,正确结论的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3),将点O,A,B,C的横坐标、纵坐标都乘以-2.
(1)画出以变化后的四个点为顶点的四边形;
(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三个顶点的坐标分别为A(1,1),B(4,2),C(3,4);
(1)请画出将绕A点逆时针旋转90度得到的图形△AB1C1;
(2)请画出关于原点O成中心对称的图形;
(3)在x轴上找一点P,使PA+PB的值最小,请在图上标出点P,并直接写出点P的坐标______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=-x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若△BPN∽△APM,求点M的坐标;
②过点N作NQ⊥AB于Q,当N点坐标是多少时,NQ取得最大值,最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com