【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3),将点O,A,B,C的横坐标、纵坐标都乘以-2.
(1)画出以变化后的四个点为顶点的四边形;
(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.
科目:初中数学 来源: 题型:
【题目】求解体验:
(1)已知抛物线 y=﹣x2+bx﹣3 经过点(﹣1,0),则 b= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 y=ax2+bx+c(a≠0),以 y 轴上的点 M(0,m)为中心,作该抛物线关于点 M 对称的 抛物线 y′,则我们又称抛物线 y′为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.
(2)已知抛物线 y=﹣x2﹣2x+5 关于点(0,m)的衍生抛物线为 y′,若这两条抛物线有交点,求 m 的取值范 围.
问题解决:
(3)已知抛物线 y=ax2+2ax﹣b(a≠0)
①若抛物线 y 的衍生抛物线为 y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求 a、b 的值及衍生中心的坐标;
②若抛物线 y 关于点(0,k+12)的衍生抛物线为 y1,其顶点为 A1;关于点(0,k+22)的衍生抛物线为 y2,其顶点为 A2;…;关于点(0,k+n2)的衍生抛物线为 yn,其顶点为 An…(n 为正整数).求 An An+1 的长(用含 n 的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:
(1)max{5,2}= ,max{0,3}= ;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;
(3)求函数与y=﹣x+2的图象的交点坐标,函数的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,}的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)
(1)求抛物线的解析式
(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点
①当点N在何处时,△CAN的周长最小?
②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E,G两点,CE,BG相交于点O
(1)求证:AG=DE.
(2)已知AB=4,AD=5,
①求的值.
②求四边形ABOE的面积与△BOC的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
根据以上数据,估算袋中的白棋子数量为( )
A. 60枚B. 50枚C. 40枚D. 30枚
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形BEFG的边BG在正方形ABCD的边BC上,连结AG,EC.
(1)说出AG与CE的大小关系;
(2)图中是否存在通过旋转能够相互重合的两个三角形?若存在,请详细写出旋转过程;若不存在,请说明理由.
(3)请你延长AG交CE于点M,判断AM与CE的位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是___;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出AD长度的所有可能值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的菱形按照一定规律组成的,请根据排列规律完成下列问题:
(1)填写下表:
图形序号 | 菱形个数个 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根据表中规律猜想,图n中菱形的个数用含n的式子表示,不用说理;
(3)是否存在一个图形恰好由91个菱形组成?若存在,求出图形的序号;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com