【题目】如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为y=t+27; ④若△ABE与△QBP相似,则t=秒, 其中正确结论的个数为( )
A. 1个B. 2个C. 3个D. 4个
【答案】C
【解析】
据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
①根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/s,
∴BC=BE=5cm,
∴AD=BE=5,故①正确;
②如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB= ,
∴PF=PBsin∠PBF= t,
∴当0<t≤5时,,故②正确;
③根据5-7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,
故点H的坐标为(11,0),
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:,
解得:.
故直线NH的解析式为:,故③错误;
④当△ABE与△QBP相似时,点P在DC上,如图2所示:
∵tan∠PBQ=tan∠ABE= ,
∴,即,
解得:t= .故④正确;
综上可得①②④正确,共3个.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,已知扇形AOB的圆心角为120°,点C是半径OA上一点,点D是上一点.将扇形AOB沿CD对折,使得折叠后的图形恰好与半径OB相切于点E.若∠OCD=45°,OC=+1,则扇形AOB的半径长是( )
A. 2+B. 2+C. 2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区有一块长为30 m,宽为24 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把3颗算珠放在计数器的3根插棒上构成一个数字,例如,如图摆放的算珠表示数300.现将3颗算珠任意摆放在这3根插棒上.
(1)若构成的数是两位数,则十位数字为1的概率为 ;
(2)求构成的数是三位数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在苏州园林研学时,校综合实践活动小组的同学欲测量公园内一棵树的高度,他们在这棵树的正前方一座楼亭前的台阶上点处测得树顶端的仰角为,朝着这棵树的方向走到台阶下的点处,测得树顶端的仰角为.已知点的高度为米,台阶的坡度为 (即),且三点在同一条直线上.请根据以上条件求出树的高度(侧倾器的高度忽略不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题情境) 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
(数学模型)
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2( )(x>0)
(探索研究)
我们可以借鉴以前研究函数的经验,先探索函数y=(x>0)的图象和性质.
(1)①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=(x>0)的最小值.
解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ACB中,AC=BC=10,AB=16,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为点E,F,则DE+DF等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 要了解我市居民的低碳生活状况,适宜采用抽样调查的方法
B. 一组数据2,2,3,6的众数和中位数都是2
C. “掷一枚硬币正面朝上的概率是”,表示每抛硬币2次就有1次正面朝上
D. 随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com