精英家教网 > 初中数学 > 题目详情

【题目】如图,已知平分

1)说明:;(2)求的度数.

【答案】1)见解析;(2.

【解析】

1)由DCFP知∠3=2=1,可得DCAB

2)由(1)利用平行线的判定得到ABPFCD,根据平行线的性质得到∠AGF=GFP,∠DEF=EFP,然后利用已知条件即可求出∠PFH的度数.

解:(1)∵DCFP

∴∠3=2

又∵∠1=2

∴∠3=1

DCAB

2)∵DCFPDCAB,∠DEF=30°

∴∠DEF=EFP=30°ABFP

又∵∠AGF=80°

∴∠AGF=GFP=80°

∴∠GFE=GFP+EFP=80°+30°=110°

又∵FH平分∠EFG

∴∠PFH=GFP-GFH=80°-55°=25°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣x+m(m为常数).

(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.

(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条公路的转弯处是一段圆弧().

(1)用直尺和圆规作出所在圆的圆心;(要求保留作图痕迹,不写作法)

(2)的中点的距离为m,m,求所在圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD内有一点P满足AP=ABPB=PC,连接ACPD

求证:(1APB≌△DPC;(2BAP=2PAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:二次函数y=ax2bxc的图象所示,下列结论中:①abc>0;②2ab=0;③当m≠1时,abam2bm;④abc>0;⑤若ax12bx1=ax22bx2,且x1x2,则x1x2=2,正确的个数为

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,已知,动点同时从两点出 发,分别沿方向匀速移动,动点的速度是,动点的速度是,当点到达点时,两点停止运动,连接,设点的运动时间为,试解答下面的问题:

时,求的面积?

为何值时,点在线段的垂直平分线上?

是否存在某一时刻,使点的角平分线上,若存在,请求出的值;若不存 在,请说明理由?

请用含有的代数式表示四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)

结合统计图完成下列问题:

(1)扇形统计图中,表示12.5≤x<13部分的百分数是

(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;

(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC60°.在△ABC的外侧作直线AP,点C关于直线AP的对称点为D,连接ADBD

1)依据题意补全图形;

2)当∠PAC等于多少度时,ADBC?请说明理由;

3)若BD交直线AP于点E,连接CE,求∠CED的度数;

4)探索:线段CEAEBE之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案