【题目】阅读下列材料:
根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.
根据上述材料,解决下列问题:
如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.
(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;
(2)若|m+4|+|m-8|=20,求m的值;
(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.
【答案】(1) 12, 12; (2) -8或12;(3) 11,-9.
【解析】
(1)代入两点间的距离公式即可求得AB的长;依据点M在A、B之间,结合数轴即可得出所求的结果即为A、B之间的距离,进而可得结果;
(2)由(1)的结果可确定点M不在A、B之间,再分两种情况讨论,化简绝对值即可求出结果;
(3)由|m+4|+n=6可确定n的取值范围,进而可对第2个等式进行化简,从而可得n与m的关系,再代回到第1个等式即得关于m的绝对值方程,再分两种情况化简绝对值求解方程即可.
解:(1)因为点A、B表示的数分别是﹣4、8,所以AB==12,
因为点M在A、B之间,所以|m+4|+|m﹣8|=AM+BM=AB=12,
故答案为:12,12;
(2)由(1)知,点M在A、B之间时|m+4|+|m-8|=12,不符合题意;
当点M在点A左边,即m<﹣4时,﹣m﹣4﹣m+8=20,解得m=﹣8;
当点M在点B右边,即m>8时,m+4+m﹣8=20,解得m=12;
综上所述,m的值为﹣8或12;
(3)因为,所以,所以,所以,
所以,所以,
因为,所以,即,
当m+4≥0,即m≥﹣4时,,解得:m=11,此时n=-9;
当m+4<0,即m<﹣4时,,此时m的值不存在.
综上,m=11,n=-9.
故答案为:11,﹣9.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三点在数轴上,点表示的数是,从点出发向右平移7个单位长度得到点.
(1)求出点表示的数,画一条数轴并在数轴上标出点和点;
(2)若此数轴在一张纸上,将纸沿某一条直线对折,此时点与表示数的点刚好重合,折痕与数轴有一个交点,求点表示的数;
(3)从初始位置分别以1单位长度和2单位长度的速度同时向左运动,是否存在的值,使秒后点到的距离与点到原点距离相等?若存在请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=ax+b与反比例函数y=﹣的图象交于A(﹣4,1)、B(m,﹣4),且直线l与y轴交于点C.
(1)求直线l的解析式;
(2)若不等式ax+b>﹣成立,则x的取值范围是 ;
(3)若直线x=n(n<0)与y轴平行,且与双曲线交于点D,与直线l交于点H,连接OD、OH、OA,当△ODH的面积是△OAC面积的一半时,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是( )
A. 一定相似 B. 当E是AC中点时相似
C. 不一定相似 D. 无法判断
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 观察下列三行数:
2,4,8,16,32,
,1,2,4,8,
1,5,7,17,31,
如图,第一行数的第n(n为正整数)个数用来表示,第二行数的第n个数用来表示,第三行数的第n个数用来表示
(1)根据你发现的规律,请用含n的代数式表示数,,的值= ; = ; = ;
(2)取每行的第6个数,计算这三个数的和
(3)若记为x,求 (结果用含x的式子表示并化简)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.
数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.
有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.
若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交交费(元)与用水量(吨)的函数关系如图所示。
(1)分别写出当和时,与的函数关系式;
(2)若某用户该月用水21吨,则应交水费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com