【题目】如图,已知直线l:y=ax+b与反比例函数y=﹣的图象交于A(﹣4,1)、B(m,﹣4),且直线l与y轴交于点C.
(1)求直线l的解析式;
(2)若不等式ax+b>﹣成立,则x的取值范围是 ;
(3)若直线x=n(n<0)与y轴平行,且与双曲线交于点D,与直线l交于点H,连接OD、OH、OA,当△ODH的面积是△OAC面积的一半时,求n的值.
【答案】(1)y=﹣x﹣3;(2)x<﹣4或0<x<1;(3)n的值为﹣1,﹣2,﹣5.
【解析】分析:(1)由点B在反比例函数的图象上求m的值,用待定系数法求直线l的解析式;(2)即直线在曲线的上方时x的取值范围;(3)求出点C的坐标,确定△OAC的面积,用含n的式子表示出DH的长,分两种情况,根据三角形的面积公式列方程求解.
详解:解:(1)∵y=﹣,B(m,﹣4),
∴m=1,∴B(1,﹣4).
∵y=ax+b过A(﹣4,1),B(1,﹣4),
∴,
解得,
∴直线解析式为y=﹣x﹣3;
(2)由函数图象可知,不等式ax+b>﹣成立,则x的取值范围是x<﹣4或0<x<1.
故答案是:x<﹣4或0<x<1;
(3)∵直线与y轴交点为(0,﹣3),
∴S△OAC=×3×4=6.
由直线x=n可知D(n,﹣),H(n,-n-3),
当﹣4<n<0时,DH=--(-n-3)=-n+3,
∵,S△ODH=S△OAC=×6=3,
∴·(-n)=3,即(-)(-n)=3.
整理得n2+3n+2=0,
解得:n1=﹣1,n2=﹣2;
当n<﹣4时,DH=(-n-3)-(-)=-n-3,
∴·(-n)=3,即(-n-3)(-n)=3.
整理得n2+3n﹣10=0,
解得:n1=﹣5,n2=2(不合题意,舍去).
综上可知n的值为﹣1,﹣2,﹣5.
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠A=36°.
(1)作∠ABC的平分线BD,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)条件下,比较线段DA与BC的大小关系(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在黄金周促销期间规定:商场内所有商品按标价的打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
说明:表示在范围中,可以取到a,不能取到b.
根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.
例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:元,实际付款420元.
购买商品得到的优惠率,
请问:
购买一件标价为500元的商品,顾客的实际付款是多少元?
购买一件商品,实际付款375元,那么它的标价为多少元?
请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.
求作:直线AD,使得AD∥l.作法:如图2,
①在直线l上任取一点B,连接AB;
②以点B为圆心,AB长为半径画弧,
交直线l于点C;
③分别以点A,C为圆心,AB长为半径
画弧,两弧交于点D(不与点B重合);
④作直线AD.
所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)
证明:连接CD.
∵AD=CD=__________=__________,
∴四边形ABCD是 ( ).
∴AD∥l( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.
根据上述材料,解决下列问题:
如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.
(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;
(2)若|m+4|+|m-8|=20,求m的值;
(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com