【题目】在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字.
(1)从中随机摸出一个球,求这个球上数字是奇数的概率是 ;
(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax经过点A(4,2),点B在双曲线y=
(x>0)的图象上,连结OB、AB,若∠ABO=90°,BA=BO,则k的值为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.
![]()
(1)求抛物线的函数表达式;
(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为
,求点P,Q的坐标;
(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“食品安全”受到全社会的广泛关注,武汉市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心角为 ;
(2)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,恰好抽到1个男生和1个女生的概率为 ;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数
分别交
、
轴于
、
两点,抛物线
经过
、
两点,与
轴的另一交点为
.
(1)求
、
的值及点
的坐标;
(2)动点
从点
出发,以每秒1个单位长度的速度向点
运动,过
作
轴的垂线交抛物线于点
,交线段
于点
.设运动时间为
秒.
①当
为何值时,线段
长度最大,最大值是多少?(如图1)
②过点
作
,垂足为
,连结
,若
与
相似,求
的值(如图2)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师留在小黑板上的题如图所示.小彬说:该抛物线过点
;小明说:
;小颖说:该抛物线在
轴上截得的线段长为
.你认为三人的说法中,正确的有( )
![]()
A.
个B.
个C.
个D.
个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.
![]()
(1)求抛物线的解析式.
(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.
(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=
.(其中mk≠0)图象交于A(﹣4,2),B(2,n)两点.
(1)求一次函数和反比例函数的表达式;
(2)求△ABO的面积;
(3)请直接写出当一次函数值大于反比例函数值时x的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com