精英家教网 > 初中数学 > 题目详情

【题目】如图为二次函数yax2+bx+c的图象,在下列说法中①ac0;②方程ax2+bx+c0的根是x1=﹣1x23;③a+b+c0;④当x1时,yx的增大而增大,正确的是( )

A. ①③B. ②④C. ①②④D. ②③④

【答案】D

【解析】

①依据抛物线开口方向可确定a的符号、与y轴交点确定c的符号进而确定ac的符号;②由抛物线与x轴交点的坐标可得出一元二次方程ax2+bx+c=0的根;③由当x=1y0,可得出a+b+c0;④观察函数图象并计算出对称轴的位置,即可得出当x1时,yx的增大而增大.

由图可知:

,故错误;

由抛物线与轴的交点的横坐标为

方程的根是,故正确;

由图可知:时,

,故正确;

由图象可知:对称轴为:

时,随着的增大而增大,故正确;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的U形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°AB位置,且左边细管位置不变,则此时U形装置左边细管内水柱的高度约为(  )

A. 4cmB. 2cmC. 3cmD. 8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,n+1个直角边长为3的等腰直角三角形AB1C1C1B2C2……,斜边在同一直线上,设B2D1C1的面积为S1B3D2C2的面积为S2Bn+1Dnn的面积为Sn,则S1_____S2_____Sn_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以AC为直径作O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.

(1)求证:DE是O的切线;

(2)若CF=2,DF=4,求O直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ACEF为正方形,以AC为斜边作RtABC,∠B=90°AB=4BC=2,延长BC至点D,使CD=5,连接DE

1)求正方形的边长;

2)求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点M的坐标为(02),以M为圆心,以4为半径的圆与x轴相交于点BC,与y轴正半轴相交于点AAAEBC,点D为弦BC上一点,AEBD,连接ADEC

(1)BC两点的坐标;

(2)求证:ADCE

(3)若点P是弧BAC上一动点(P点与AB点不重合),过点P的⊙M的切线PGx轴于点G,若△BPG为直角三角形,试求出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A

(1)求证:BC为O的切线;

(2)求B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:制作无盖盒子

任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4cm,容积为的无盖长方体盒子纸板厚度忽略不计

请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.

请求出这块矩形纸板的长和宽.

任务二:图2是一个高为4cm的无盖的五棱柱盒子直棱柱,图3是其底面,在五边形ABCDE中,

试判断图3AEDE的数量关系,并加以证明.

2中的五棱柱盒子可按图4所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少cm?请直接写出结果图中实线表示剪切线,虚线表示折痕纸板厚度及剪切接缝处损耗忽略不计

查看答案和解析>>

同步练习册答案