【题目】综合与实践:制作无盖盒子
任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4cm,容积为的无盖长方体盒子纸板厚度忽略不计.
请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.
请求出这块矩形纸板的长和宽.
任务二:图2是一个高为4cm的无盖的五棱柱盒子直棱柱,图3是其底面,在五边形ABCDE中,,,,.
试判断图3中AE与DE的数量关系,并加以证明.
图2中的五棱柱盒子可按图4所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少cm?请直接写出结果图中实线表示剪切线,虚线表示折痕纸板厚度及剪切接缝处损耗忽略不计.
【答案】任务一:(1)作图见试题解析;(2)30,15;任务二(1)AE=DE;(2),.
【解析】
试题任务一:(1)按要求画出示意图即可;
(2)设矩形纸板的宽为xcm,则长为2xcm,根据题意列出方程,解出即可.
任务二:(1)AD=DE,延长EA、ED分别交直线BC于点M、N,先证明△MAB≌△NDC,得到AM=DN即可;
(2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接AD,GF,过B,C分别作BM⊥AD于M,CN⊥AD于N,过E作EP⊥AD于P,则GF即为矩形纸板的长,MN=BC=12,AP=DP,得到∠BAM=∠CDN=60°,求出AM、DN、BM、CN的长,然后通过三角形相似即可得到结果.
试题解析:任务一:(1)如图1所示:
(2)设矩形纸板的宽为xcm,则长为2xcm,由题意得:4(x﹣2×4)(2x﹣2×4)=616,解得:,(舍去),∴2x=2×15=30,
答:矩形纸板的长为30cm,宽为15cm;
任务二:(1)AE=DE,证明如下:延长EA,ED分别交直线BC于M,N,∵∠ABC=∠BCD=120°,∴∠ABM=∠DCN=60°,∵∠EAB=∠EDC=90°,∴∠M=∠N=30°,∴EM=EN,在△MAB与△NDC中,∵∠M=∠N,∠ABM=∠DCN,AB=DC,∴△MAB≌△NDC,∴AM=DN,∴EM﹣AM=EN﹣DN,∴AE=DE;
(2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接AD,GF,过B,C分别作BM⊥AD于M,CN⊥AD于N,过E作EP⊥AD于P,则GF即为矩形纸板的长,MN=BC=12,AP=DP,∴∠BAM=∠CDN=60°,∵AB=CD=6,∴AM=DN=3,BM=CN=,∴AP=AD=(3+3+12)=9,∴AE=,PE=,∵AD∥GF,∴△EAD∽△EGF,∴,∴GF=,∴矩形纸板的长至少为,矩形纸板的宽至少为PE+BM++4==.
科目:初中数学 来源: 题型:
【题目】如图①,在矩形中,动点从出发,以相同的速度,沿 方向运动到点处停止.设点运动的路程为, 面积为,与的函数图象如图②所示.
(1)矩形的面积为 ;
(2)如图③,若点沿边向点以每秒1个单位的速度移动,同时,点从点出发沿边向点以每秒2个单位的速度移动.如果、两点在分别到达、两点后就停止移动,回答下列问题:
①当运动开始秒时,试判断的形状;
②在运动过程中,是否存在这样的时刻,使以为圆心,的长为半径的圆与矩形的对角线相切,若存在,求出运动时间;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一座大桥的两端位于河的 A、B 两点,某同学为了测量 A、B 两点之间的河宽,在垂直于大桥 AB 的直线型道路 l 上测得了如下的数据:∠BDA=76.1°,∠BCA=68.2°,CD=42.8 米。求大桥 AB 的长(精确到 1 米) 参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与反比例函数的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.
(1)求k和b的值;
(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;
(3)在y轴上是否存在一点P,使?若存在请求出点P坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个 .
(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;
(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象分别与x轴、y轴交于点A、C,与反比列函数的图象在第一象限内交于点P,过点P作轴,垂足为B,且的面积为9.
点A的坐标为______,点C的坐标为______,点P的坐标为______;
已知点Q在反比例函数的图象上,其横坐标为6,在x轴上确定一点M,使得的周长最小,求出点M的坐标;
设点E是反比例函数在第一象限内图象上的一动点,且点E在直线PB的右侧,过点E作轴,垂足为F,当和相似时,求动点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC≌△DCE≌△GEF,三条对应边BC.CE、EF在同一条直线上,连接BG,分别交AC、DC、DE于点P、Q、K,其中S△PQC=3,则图中三个阴影部分的面积和为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com