精英家教网 > 初中数学 > 题目详情

【题目】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3A型空调和2B型空调,需费用39000元;4A型空调比5B型空调的费用多6000元.

(1)求A型空调和B型空调每台各需多少元;

(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?

(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?

【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.

【解析】(1)根据题意可以列出相应的方程组,从而可以解答本题;

(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;

(3)根据题意和(2)中的结果,可以解答本题.

1)设A型空调和B型空调每台各需x元、y元,

,解得,

答:A型空调和B型空调每台各需9000元、6000元;

(2)设购买A型空调a台,则购买B型空调(30-a)台,

解得,10≤a≤12

a=10、11、12,共有三种采购方案,

方案一:采购A型空调10台,B型空调20台,

方案二:采购A型空调11台,B型空调19台,

方案三:采购A型空调12台,B型空调18台;

(3)设总费用为w元,

w=9000a+6000(30-a)=3000a+180000,

∴当a=10时,w取得最小值,此时w=210000,

即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD四条边上的中点分别为EFGH,顺次连接EFFGGHHE,得到四边形EFGH(即四边形ABCD的中点四边形).

1)四边形EFGH的形状是 ,证明你的结论.

2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;

3)你学过的哪种特殊四边形的中点四边形是矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形沿直线折叠,顶点恰好落在边上点处,已知,则图中阴影部分面积为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是(
A.相离
B.相切
C.相交
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a3b)、宽为(2ab)的大长方形;

1)需要A类、B类和C类卡片的张数分别为(  )

A2,3,7  B3,7,2

C2,5,3  D2,5,7

2)画出长方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c中,自变量x与函数y之间的部分对应值如下表:

在该函数的图象上有A(x1 , y1)和B(x2 , y2)两点,且-1<x1<0,3<x2<4,y1与y2的大小关系正确的是( )
A.y1≥y2
B.y1>y2
C.y1≤y2
D.y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.

(1)直接写出抛物线的顶点M的坐标是
(2)当点E与点O(原点)重合时,求点P的坐标.
(3)点P从M运动到N的过程中,求动点E的运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在解方程组时,我们可以先①+②,得再②-①,得最后重新组成方程组,这种解二元一次方程组的解法我们称为二元一次方程组的轮换对称解法.

(1)用轮换对称解法解方程组,得_____________________________

(2)如图,小强和小红一起搭积木,小强所搭的小塔高度为32cm,小红所搭的小树高度为3lcm,设每块A型积木的高为每块B型积木的高为的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知;直线ABCD,直线MN分别与ABCD交于点EF

1)如图1,∠BEF和∠EFD的平分线交于点G.求∠G的度数;

2)如图2EIEK为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点IK,猜想∠FIE和∠K的关系,并证明;

3)如图3,点Q为线段EF(端点除外)上的一个动点,过点QEF的垂线交ABR,交CDJ,∠AEF、∠CJR的平分线相交于P,问∠EPJ的度数是否会发生变化?若不发生变化,求出∠EPJ的度数;若会发生变化,请说明理由.

查看答案和解析>>

同步练习册答案