精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,ABCD.

(1)则图①中的∠1+2的度数是180°.

(2)则图②中的∠1+2+3的度数是多少?

解:如图⑤,过点EEFAB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).

所以∠1+AEF=180°.

因为ABCD

所以CDEF.

所以∠FEC+3=180°.

所以∠1+2+3=360°.

认真阅读(2)的解题过程,求图③中∠1+2+3+4的度数是多少?探究图④中∠1+2+3+4+…+n的度数是多少?

【答案】540°;(n-1180°.

【解析】

分别过CDCE∥ABDF∥AB,则CE∥DF∥CD,根据平行线的性质即可得到结论;根据角的个数n与角的和之间的关系是(n-1180°,于是得到∠1+∠2+∠3+∠4+…+∠n的度数=(n-1180°

如图,分别过EFGE∥ABHF∥AB,则AB∥EG∥FH∥CD

∴∠A∠AEG∠GEF∠HFE∠C∠CFH180°

∴∠1+∠2+∠3+∠4=∠A∠AEG+∠GEF∠HFE+∠C∠CFH540°3×180°

由(1)(2)可得角的个数n与角的和之间的关系是(n-1180°

∴∠1+∠2+∠3+∠4+…+∠n的度数为(n-1180°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD2BDE为线段AC上一点,CE2AE,若图中所有线段的长度之和是线段AD长度的7倍,则的值为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形ABC三边的长分别为ABm2n2AC2mnBCm2+n2,其中mn都是正整数.以ABACBC为边分别向外画正方形,面积分别为S1S2S3,那么S1S2S3之间的数量关系为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)ABCD,猜想∠BPD与∠B.D的关系,说明理由.(提示:三角形的内角和等于180°)

①填空或填写理由

解:猜想∠BPD+B+D=360°

理由:过点PEFAB

∴∠B+BPE=180°______

ABCDEFAB

___________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解题方法,观察图(2),已知ABCD,猜想图中的∠BPD与∠B.D的关系,并说明理由.

③观察图(3)(4),已知ABCD,直接写出图中的∠BPD与∠B.D的关系,不说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是腰长为1的等腰直角三形,以RtABC的斜边AC为直角边,画第二个等腰RtACD,再以RtACD的斜边AD为直角边,画第三个等腰RtADE,依此类推,则第2018个等腰直角三角形的斜边长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A-25),B-3,3),C12),点Pm,n)是三角形ABC内任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1m+6,n-2).

1)直接写出平移后点A1B1C1的坐标分别为

2)画出三角形ABC平移后的三角形A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,O外的一点D 在直线AB上.

(1)若AC=,OB=BD.

①求证:CD是⊙O的切线.

②阴影部分的面积是   .(结果保留π)

(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在电线杆上的C处引拉线CECF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB1.5米,求拉线CE的长(结果保留根号).

查看答案和解析>>

同步练习册答案