【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE,若图中所有线段的长度之和是线段AD长度的7倍,则的值为( )
A.B.C.D.
【答案】A
【解析】
设CD=2BD=2x,CE=2AE=2y,则BD=x,AE=y,再用x、y表示出所有线段的长度之和;
进而用x、y表示出AD=AE+ED的长,据此结合题意得到等式,求出x、y的关系式,然后用x表示出AD、AC,从而求出的值.
设CD=2BD=2x,CE=2AE=2y,
则BD=x,AE=y,
∵AC=AE+EC=3y,ED=CE-CD=2y-2x,
∴所有线段的长度之和为AE+AB+AD+AC+EB+ED+EC+BD+BC+DC
=(AE+EC)+(AB+BC)+(AD+DC)+AC+(EB+BD)+ED
=4AC+2ED=43y+2(2y-2x)=12y+4y-4x=16y-4x,
又∵AD=AE+ED=y+2y-2x=3y-2x,
∴根据题意,得16y-4x=7(3y-2x),即y=2x,
∴AD=3y-2x=4x,AC=3y=6x,
.
故选A.
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y=的图象经过点C.
(1)求k的值;
(2)根据图象,直接写出y<3时自变量x的取值范围;
(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周日,小华从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小华离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中不正确的是( )
A. 小华家离报亭的距离是1200m
B. 小华从家去报亭的平均速度是80m/min
C. 小华从报亭返回家中的平均速度是80m/min
D. 小华在报亭看报用了15min
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系绕,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,那么表示7班学生的识别图案是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮家与姥姥家相距24km. 小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家. 在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示. 根据图象得到下列结论,其中错误的是( )
A. 小亮骑自行车的平均速度是12km/h
B. 妈妈比小亮提前0.5小时到达姥姥家
C. 妈妈在距家12km处追上小亮
D. 9:30妈妈追上小亮
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB∥CD.
(1)则图①中的∠1+∠2的度数是180°.
(2)则图②中的∠1+∠2+∠3的度数是多少?
解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).
所以∠1+∠AEF=180°.
因为AB∥CD,
所以CD∥EF.
所以∠FEC+∠3=180°.
所以∠1+∠2+∠3=360°.
认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com