精英家教网 > 初中数学 > 题目详情

【题目】某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是(  )

A.20B.18C.15D.10

【答案】A

【解析】

设文学类图书平均价格为x/本,则科普类图书平均价格为1.2x/本,根据数量=总价÷单价结合用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,即可得出关于x的分式方程,解之经检验后即可得出结论.

设文学类图书平均价格为x/本,则科普类图书平均价格为1.2x/本,

依题意得:

解得:x20

经检验,x20是原方程的解,且符合题意.

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组同学借助无人机航拍测量某公园内一座古塔高度.如图,无人机在距离地面168米的A处,测得该塔底端点B的俯角为40°,然后向古塔方向沿水平面飞行50秒到达点C处,此时测得该塔顶端点D的俯角为60°.已知无人机的飞行速度为3/秒,则这座古塔的高度约为_____米(参考计算:sin40°≈064cos40°≈077tan40°≈0.84.1.41. 1.73.结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物y=﹣x轴交于AB两点(点A在点B的左侧),与y轴交于点CCD两点关于抛物线对称轴对称,连接BDy轴于点E,抛物线对称轴交x轴于点F

1)点P为线段BD上方抛物线上的一点,连接PDPE.点My轴上一点,过点MMNy轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;

2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PME′,点GMN的中点,连接MG交抛物线的对称轴于点H,过点H作直线lPM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线ABAC的夹角为124°,凉亭顶盖边缘BC到地面的距离为2.4米,石桌的高度DE0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(AED三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88tan42°≈0.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于55元,设每件商品的售价上涨x(x为整数),每周的销售利润为y元.

(1)yx的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,过点作,交弦于点,交于点,且使.

1)求证:的切线;

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围.

2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?

3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.

查看答案和解析>>

同步练习册答案