【题目】如图抛物y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.
(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;
(2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.
【答案】(1)PM+MN+NF的最小值=;(2)存在,点S的坐标为:S1(,),S2(,).
【解析】
(1)待定系数法求直线BD解析式,再根据二次函数最大值方法求△PDE面积最大时对应的点P坐标,最后依据两点之间线段最短求PM+MN+NF的最小值;
(2)由旋转求点M′坐标,待定系数法求直线PM解析式、直线M′G以及直线l的解析式,依据矩形性质分类讨论求R坐标,再根据平移规律求相应的S坐标.
(1)在抛物线y=﹣x2-中,令x=0,得:y=,令y=0,得:
x1=﹣3,x2=1
∴A(﹣3,0),B(1,0),C(0,),
∵y=﹣x2=,
∴抛物线对称轴为:直线x=﹣1
∴D(﹣2,),
设直线BD解析式为y=kx+b,将B(1,0),D(﹣2,)代入得 ,
解得:
∴直线BD解析式为y=-x+
∴E(0,),
过点P作PG⊥x轴于G交BD于H,作PQ⊥BD于Q,连接CD,
设P(m,-m2- +),H(m,-m+)
PH=-m2- +
∵PG∥y轴
∴∠PHD=∠DEC,
∵C、D关于直线x=﹣1对称,
∴∠DCE=∠PQE=90°
∴△DCE∽△HQP
∴,即:PQDE=DCPH,
∴S△PDE=PQDE=DCPH=×2(-m2- +)
=-,
∵-<0,
∴当m=﹣时,S△PDE的最大值=,此时,P(﹣,),
过点F作∠NFS=60°,过N作∠FNS=30°,FS与NS交于点S,如图,
∴∠FSN=90°,
∴NS=NFcos∠FNS=NFcos30°=NF,过M作MK∥NS,且MK=NS,
当P、M、K三点共线时,PM+MK最小,
∴∠PMC=∠KME=∠FNS=30°
∴PM=2PL=1,LM=,MK=NS=NF=(﹣)=,MN=1
∴PM+MN+NF的最小值=1+1+=.
(2)如图:
由(1)知:P(﹣,),M(0,),可求得直线PM解析式为:y=-x+,
∵∠PML=30°,∠PLM=90°,∴∠LPM=60°
∵∠MPM′=120°,PM′=PM=1
∴M′、P、L三点共线,∴M′(-,),
∵点G是MN的中点,
∴G(-,),待定系数法可求得直线M′G的解析式为:y=-,令x=﹣1,得y=
∴H(﹣1,),∵直线l∥PM且过点H,
∴直线l的解析式为:y=-x,设R(t,-t),∵以点M′,点G,点R,点S为顶点的四边形是矩形
∴可以分两种情形:M′G为边或M′G为对角线
①M′G为边,∠RM′G=90°时
∴M′R2+M′H2=RH2,即:(t+ =(t+1)2+(-t-)2
解得:t=-,
∴R(﹣, ),由平移可得S1(-,),
②M′G为边,∠M′GR=90°时
∴GR2+HG2=HR2,即:(t+=(t+1)2+(-t-)2,
解得:t=-,
∴R(-,),由平移可得S2(-,),
③M′G为对角线,∠M′RG=90°
∴M′R2+RG2=M′G2,即:(t+)2+(--)2+(t+)2+(- =(- ,无解;
综上所述,点S的坐标为:S1(-),S2(-).
科目:初中数学 来源: 题型:
【题目】使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)
(1)当m=0时,求该函数的零点.
(2)证明:无论m取何值,该函数总有两个零点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径,点O为圆心的半圆上有一点C,且∠ABC=60°,点D为AO上一点.将△DBC沿直线DC对折得到△DB'C,点B的对应点为B′,且B'C与半圆相切于点C,连接B′O交半圆于点E.
(1)求证:B'D⊥AB;
(2)当AB=2时,求图中阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进一步了解八年级学生的身体素质情况,体育老师以八年级(1)班50位学生为样本进行了一分钟跳绳次数测试.根据测试结果,绘制出部分频数分布表和部分频数分布直方图.
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a= ;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第 组;
(4)已知该校八年级共有学生800,请你估计一分钟跳绳次数不低于120次的八年级学生大约多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=,则CE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是( )
A.20元B.18元C.15元D.10元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为培养学生的创造性思维,学校举行科技小制作比赛.对公开征集到的科技小制作作品的数量进行了分析统计,并制作了如下统计图.
(1)学校共征集到作品共 件;
(2)经过评选后,有2名男生和2名女生获得一等奖.现要从这4位同学中抽两人去参加表彰座谈会,请用树状图或列表法求出恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为,则图中阴影部分的面积为( )
A.π﹣B.2C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com