精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,弦CD⊥AB,垂足为点ECF⊥AF,且CF=CE

1)求证:CF⊙O的切线;

2)若sin∠BAC=,求的值.

【答案】1)证明:连接OC

∵CE⊥ABCF⊥AFCE=CF

∴AC平分∠BAF,即∠BAF=2∠BAC

∵∠BOC=2∠BAC∴∠BOC=∠BAF

∴OC∥AF∴CF⊥OC∴CF⊙O的切线。

2)解:∵AB⊙O的直径,CD⊥AB

∴CE=ED∠ACB=∠BEC=90°

∴SCBD=2SCEB∠BAC=∠BCE∴△ABC∽△CBE

【解析】

1)首先连接OC,由CD⊥ABCF⊥AFCF=CE,即可判定AC平分∠BAF,由圆周角定理即可得∠BOC=2∠BAC,则可证得∠BOC=∠BAF,即可判定OC∥AF,即可证得CF⊙O的切线。

2)由垂径定理可得CE=DE,即可得SCBD=2SCEB,由△ABC∽△CBE,根据相似三角形的面积比等于相似比的平方,易求得△CBE△ABC的面积比,从而可求得的值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,矩形ABCD中,AB6cmBC18cmAC的垂直平分线EF分别交ADBC于点EF,垂足为O

1)如图1,连接AFCE.求证四边形AFCE为菱形,并求AF的长;

2)如图2,动点PQ分别从AC两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点PAFBA停止,点QCDEC停止.在运动过程中.

①已知点P的速度为每秒10cm,点Q的速度为每秒6cm,运动时间为t秒,当ACPQ四点为顶点的四边形是平行四边形时,求t的值.

②若点PQ的运动路程分别为xy(单位:cmxy≠0),已知ACPQ四点为顶点的四边形是平行四边形,求xy满足的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):

七巧板拼图

趣题巧解

数学应用

小米

小麦

若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?

若七巧板拼图按折算,小麦 (填“可能”或“不可能”)获胜.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单 位:s)(0<t<)。

(1)如图1,连接DQ平分∠BDC时,t的值为      

(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;

(3)请你继续进行探究,并解答下列问题:

①证明:在运动过程中,点O始终在QM所在直线的左侧;

②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B90°AC12,∠A60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(t0).过点DDFBC于点F,连接DEEF

1AB的长是   

2)在DE的运动过程中,线段EFAD的关系是否发生变化?若不变化,那么线段EFAD是何关系,并给予证明;若变化,请说明理由.

3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,已知,,D,如何求AD的长呢?

心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,

请按照她的思路,探究并解答下列问题:

1)分别以ABAC为对称轴,画出的轴对称图形,D点的对称点为EF,延长EBFC相交于G点,试证明四边形AEGF是正方形;

2)设,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离Skm)与时间th)的关系,结合图像回答下列问题:

1)表示乙离开A地的距离与时间关系的图像是________();

甲的速度是__________km/h;乙的速度是________km/h

2)甲出发后多少时间两人恰好相距5km

查看答案和解析>>

同步练习册答案