精英家教网 > 初中数学 > 题目详情

【题目】如图,中,已知,,D,如何求AD的长呢?

心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,

请按照她的思路,探究并解答下列问题:

1)分别以ABAC为对称轴,画出的轴对称图形,D点的对称点为EF,延长EBFC相交于G点,试证明四边形AEGF是正方形;

2)设,利用勾股定理,建立关于x的方程模型,求出x的值.

【答案】1)见详解;(218

【解析】

1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
2)利用勾股定理,建立关于x的方程模型(x-62+x-92=152,求出AD=x=6

解:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF
∴∠DAB=EAB,∠DAC=FAC,又∠BAC=45°
∴∠EAF=90°
又∵ADBC
∴∠E=ADB=90°,∠F=ADC=90°
又∵AE=ADAF=AD
AE=AF
∴四边形AEGF是正方形

2)解:设AD=x,则AE=EG=GF=x
BD=6DC=9
BE=6CF=9
BG=x-6CG=x-9
RtBGC中,BG2+CG2=BC2
∴(x-62+x-92=152
∴(x-62+x-92=152,化简得,x2-15x-54=0,整理得(x-18)(x+3=0
解得x1=18x2=-3(舍去)
所以AD=x=18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两家体育用品商店出售同样的乒乓球和乒乓拍,乒乓球拍每幅定价20元,乒乓球每盒定价5元,现两家商店搞促销活动.甲店:每买一副球拍送一盒乒乓球;乙店:按定价的8折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).

1)设购买乒乓球盒数为(盒),在甲店购买的付款数为(元);在乙店购买的付款数为(元),分别写出的函数关系式,并写出定义域.

2)就乒乓球的盒数讨论去哪家购买合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边ABC的两边ABBC分别交于点MN,且ACQNAM=MB=2cmQM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBCABAC,点EBC的中点,AEBD交于点F,且FAE的中点.

(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC4AB5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,弦CD⊥AB,垂足为点ECF⊥AF,且CF=CE

1)求证:CF⊙O的切线;

2)若sin∠BAC=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,甲乙两个转盘被等分成五个扇形区域,上面分别标有数字,同时自由转动两个转盘,转盘停止后,连个指针同时落在偶数上的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?

1)方法1:如图①,连接四边形的对角线,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD之间的关系:_______________

方法2:如图②,取四边形四边的中点,连接

2)求证:四边形是平行四边形;

3)请直接写出S四边形ABCD之间的关系:_____________

方法3:如图③,取四边形四边的中点,连接交于点.先将四边形绕点旋转得到四边形,易得点在同一直线上;再将四边形绕点旋转得到四边形,易得点在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形

4)由旋转、平移可得__________________,所以,所以点在同一直线上,同理,点也在同一点线上,所以我们拼接成的图形是一个四边形.

5)求证:四边形是平行四边形.

(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)

6)应用1:如图④,在四边形中,对角线交于点,则S四边形ABCD=

7)应用2:如图⑤,在四边形中,点分别是的中点,连接交于点,则S四边形ABCD=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,内一点,过点分别作的平行线,交的四边于四点,若面积为6面积为4,则的面积为(  )

A.B.C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG.

(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;

(2)若AB=8,AD=4,求四边形DHBG的面积.

查看答案和解析>>

同步练习册答案