精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB4BCECD边上一点,将BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tanBAF,则CE_____

【答案】

【解析】

已知tanBAF=,可作辅助线构造直角三角形,设未知数,利用勾股定理可求出FMBM,进而求出FN,再利用三角形相似和折叠的性质求出EC

过点FMNAD,交ABCD分别于点MN,则MNABMNCD

由折叠得:ECEFBCBF,∠C=∠BFE90°

tanBAF,设FMx,则AM2xBM42x

RtBFM中,由勾股定理得:

x2+42x2=(2

解得:x11x22舍去,

FM1AMBM2

FN1

易证BMF∽△FNE

,即:

解得:EFEC

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是圆上一点,点D的中点,延长AD至点E,使得ABBE

1)求证:ACF∽△EBF

2)若BE10tanE,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一笔直的海岸线上有A,B两个观测站,AB的正东方向有一艘小船停在点PA测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,BP=6km.

(1)A、B两观测站之间的距离;

(2)小船从点P处沿射线AP的方向前行求观测站B与小船的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程2有非负整数解,则满足条件的所有整数a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物y=﹣x轴交于AB两点(点A在点B的左侧),与y轴交于点CCD两点关于抛物线对称轴对称,连接BDy轴于点E,抛物线对称轴交x轴于点F

1)点P为线段BD上方抛物线上的一点,连接PDPE.点My轴上一点,过点MMNy轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;

2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PME′,点GMN的中点,连接MG交抛物线的对称轴于点H,过点H作直线lPM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,CBABD为圆上一点,且ADOC,连接CDACBDACBD交于点M

1)求证:CD为⊙O的切线;

2)若CDAD,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于55元,设每件商品的售价上涨x(x为整数),每周的销售利润为y元.

(1)yx的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知P为等边ABC形内一点,且PA3cmPB4 cmPC5 cm,则图中PBC的面积为________cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扶贫攻坚活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.

①请问甲、乙两种物品的单价各为多少?

②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?

查看答案和解析>>

同步练习册答案