精英家教网 > 初中数学 > 题目详情

【题目】为培养学生的创造性思维,学校举行科技小制作比赛.对公开征集到的科技小制作作品的数量进行了分析统计,并制作了如下统计图.

1)学校共征集到作品共   ;

2)经过评选后,2名男生和2名女生获得一等奖.现要从这4位同学中抽两人去参加表彰座谈会,请用树状图或列表法求出恰好抽中一男一女的概率.

【答案】1)学校共征集到作品共12;2)列表见解析,恰好抽中一男一女的概率是

【解析】

试题(1)将条形统计图中提示数据相加即可;

2)先列表,再根据概率公式进行计算即可得解.

试题解析:(1)学校共征集到作品共:2+3+5+2=12()

2)列表法:


1

2

1

2

1


12

11

12

2

21


21

22

1

11

12


12

2

21

22

21


共有12种机会均等的结果,其中一男生一女生占8,

∴P(一男生一女生)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知梯形中,,且

⑴如图,P上的一点,满足∠BPC=A,求AP的长;

⑵如果点P边上移动(点P与点不重合),且满足∠BPE=A交直线于点E,同时交直线DC于点

①当点在线段DC的延长线上时,设CQ=y,求关于的函数关系式,并写出自变量的取值范围;

②写CE=1时,写出AP的长(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物y=﹣x轴交于AB两点(点A在点B的左侧),与y轴交于点CCD两点关于抛物线对称轴对称,连接BDy轴于点E,抛物线对称轴交x轴于点F

1)点P为线段BD上方抛物线上的一点,连接PDPE.点My轴上一点,过点MMNy轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;

2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PME′,点GMN的中点,连接MG交抛物线的对称轴于点H,过点H作直线lPM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于55元,设每件商品的售价上涨x(x为整数),每周的销售利润为y元.

(1)yx的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,过点作,交弦于点,交于点,且使.

1)求证:的切线;

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知P为等边ABC形内一点,且PA3cmPB4 cmPC5 cm,则图中PBC的面积为________cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).

请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是   人,并将以上两幅统计图补充完整;

2)若一般优秀均被视为达标成绩,则我校被抽取的学生中有   人达标;

3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?

查看答案和解析>>

同步练习册答案