精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A12),B31),C(-2,-1).

1)作出ABC关于y轴对称的A1B1C1

2A1B1C1的面积为

3)在y轴上作出点Q,使QAB的周长最小.

【答案】1)见解析;(24.5 ;(3)见解析

【解析】

1)根据关于y轴对称的点的坐标特点作出△A1B1C1即可;
2)根据SA1B1C1=S矩形EFGH-SA1EB1-SB1FC1-SA1HC1进行解答即可;
3)连接A1By轴于Q,于是得到结论;

解:(1)如图所示:△A1B1C1即为所求;

2SA1B1C1=S矩形EFGH-SA1EB1-SB1FC1-SA1HC1
=3×5-×1×2-×2×5-×3×3
=15-1-5-4.5
=4.5
故答案为:4.5

3)连接A1By轴交于点Q,Q就是所要求的点(或连接B1Ay轴于点Q

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EMAC于点N,连结DMCM以下说法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正确的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E⊙O上.

1)若∠AOD=52°,求∠DEB的度数;

2)若OC=3OA=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为C的抛物线y=ax2+bx(a>0)经过点Ax轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)过点CCE⊥OB,垂足为E,点Py轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;

(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB30°OP平分∠AOBPCOBOACPDOBD.如果PC8,那么PD等于____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形的边长为4,的中心,.绕点旋转,分别交线段两点,连接,给出下列四个结论:;;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程(组)解应用题:

为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点B作⊙O的切线交CE的延长线于点D.

(1)求证:DB=DE;

(2)若AB=12,BD=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点是正比例函数与反比例函数的图象在第一象限的交点,轴,垂足为点的面积是2.

1)求的值以及这两个函数的解析式;

2)若点轴上,且是以为腰的等腰三角形,求点的坐标.

查看答案和解析>>

同步练习册答案