【题目】如图,在中,,的平分线交于点,过点作交于点,以为直径作⊙.
(1)求证:是⊙的切线;
(2) 若AC=3,BC=4,求BE的长.
【答案】(1)证明见解析;(2) .
【解析】
(1)连接OD,由AE为直径、DE⊥AD可得出点D在⊙O上且∠DAO=∠ADO,根据AD平分∠CAB可得出∠CAD=∠DAO=∠ADO,由“内错角相等,两直线平行”可得出AC∥DO,再结合∠C=90°即可得出∠ODB=90°,进而即可证出BC是⊙O的切线;
(2)在Rt△ACB中,利用勾股定理可求出AB的长度,设OD=r,则BO=5-r,由OD∥AC可得出 ,代入数据即可求出r值,再根据BE=AB-AE即可求出BE的长度.
解:(1)证明:连接.
∵AE为直径,
点在上⊙
又∵AD平分
,即
又∵OD为半径
是⊙的切线
(2) ∵在Rt△ACB中,AC=3,BC=4,
∴AB=5.
设OD=r,则BO=5r.
∵OD∥AC,
∴△BDO∽△BCA,
∴,即 ,
解得:r= ,
∴BE=ABAE=5 = .
科目:初中数学 来源: 题型:
【题目】如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为( )
A. 5 B. C. 4 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,Pn(n,Pn)….作x轴的垂线,垂足分别为A1,A2,…,An …,连接A1P2,A2P3,…,An﹣1Pn,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点Bn的纵坐标是______________.(结果用含n代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____,方差是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.
(1)当∠MAN绕点A旋转到如图1的位置时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到BM≠DN时(如图2),则线段BM,DN和MN之间数量关系是 ;
(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积;
(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3、…、△AnAn+1Bn均为等边三角形,点A1、A2、A3、…、An+1在x轴的正半轴上依次排列,点B1、B2、B3、…、Bn在直线OD上依次排列,那么B2019的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com