精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,反比例函数与一次函数交于第二、四象限的两点,过点轴于点,点的坐标为

(1)求反比例函数和一次函数的解析式;

(2)请根据图象直接写出的自变量的取值范围.

【答案】(1) 反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x+2.(2x20x≤6

【解析】

1)根据SAOD=3可得AD=2,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B点的坐标,用待定系数法便可求出一次函数的解析式.

2)根据函数图象可直接解答.

1)∵ADy轴于点DOD3

AD2.即A(﹣23),

A点坐标代入yk≠0),得k=﹣2×3=﹣6

反比例函数的解析式为y=﹣

B点坐标代入y=﹣中,得﹣1=﹣,解得n6.即B6,﹣1),

AB两点坐标代入yax+b,得,解得

所以一次函数的解析式为y=﹣x+2

2ax+b的自变量x的取值范围是x20x≤6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴相交于两点,与轴相交于点,且点与点的坐标分别为,点是抛物线的顶点.

1)求二次函数的关系式.

2)点为线段上一个动点,过点轴于点.若的面积为

①求的函数关系式,写出自变量的取值范围.

②当取得最值时,求点的坐标.

3)在上是否存在点,使为直角三角形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办园博会知识竞赛,打算购买AB两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.

1AB两种奖品每件各多少元?

2)若购买AB奖品共100件,总费用不超过600元,则A奖品最多购买多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过B30),C0-3)两点,点D为顶点.

1)求抛物线的解析式及顶点D的坐标;

2)点E在抛物线的对称轴上,FBD上,求BE+EF的最小值;

3)点P是抛物线第四象限的点(不与BC重合),连接PB,以PB为边作正方形BPMN,当点MN恰好落在对称轴上时,求出对应的P点的坐标(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司开发处一款新的节能产品,该产品的成本价为6/件,该产品在正式投放市场前通过代销点进行了为期一个月(30)的试销售,售价为10/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y()与销售时间x()之间的函数关系.

(1)yx之间的函数表达式,并写出x的取值范围;

(2)若该节能产品的日销售利润为W(),求Wx之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?

(3)5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与直线交于点,直线轴交于点

(1)求该抛物线的解析式.

(2)是抛物线上第四象限上的一个动点,连接,当的面积最大时,求点的坐标.

(3)将抛物线的对称轴向左平移3个长度单位得到直线,点是直线上一点,连接,若直线上存在使最大的点,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

动手操作:如图1,四边形是一张矩形纸片,,点分别在边上,且,连接,将分别沿折叠,点分别落在点处.

探究展示:(1刻苦小组发现:,且,并展示了如下的证明过程.

证明:在矩形中,

又∵

(依据1

(依据2

反思交流:①上述证明过程中的依据1”依据2”分别指什么?

勤奋小组认为:还可以通过证明四边形是平行四边形获证,请你根据勤奋小组的证明思路写出证明过程.

猜想证明:(2)如图2,折叠过程中,当点在直线的同侧时,延长于点,延长于点中,则四边形是什么特殊四边形?请说明理由.

联想拓广:(3)如图3,连接

①当时,的长为_____________________

的长有最小值吗?若有,请你直接写出的最小值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳某百果园店售卖赣南脐橙,已知每千克脐橙的成本价为元,在销售脐橙的这天时间内,销售单价(元/千克)与时间第(天)之间的函数关系式为,且为整数),日销售量(千克)与时间第(天)之间的函数关系式为,且为整数)

1)请你直接写出日销售利润(元)与时间第(天)之间的函数关系式;

2)该店有多少天日销售利润不低于元?

3)在实际销售中,该店决定每销售千克脐橙,就捐赠元给希望工程,在这天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,弦于点,过点的切线交的延长线于点

1)已知,求的大小(用含的式子表示);

2)取的中点,连接,请补全图形;若,求的半径.

查看答案和解析>>

同步练习册答案