【题目】某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
【答案】(1) ;(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.
【解析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.
(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);
BC段表示的函数关系式为y=mx+n(10<x≤30),
把(1,300)、(10,120)带入y=ax+b中得,解得,
∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);
把(10,120),(30,400)代入y=mx+n中得,解得,
∴线段BC表示的函数关系式为y=14x-20(10<x≤30),
综上所述.
(2)由题意可知单件商品的利润为10-6=4(元/件),
∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;
当10<x≤30时,w=4×(14x-20)=56x-80,
∴,日销售利润不超过1040元,即w≤1040,
∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;
当10<x≤30时,w=56x-80≤1040,解得x≤20,
∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.
(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D为BC上一点,以AD为腰作等腰△ADE,AD=AE,∠BAC=∠DAE,连接CE.
(1)求证:BD=CE;
(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面积为1,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(如图1,等边△ABC中,D是AB边上的点,以CD为一边,向上作等边△EDC,连接AE.
(1)求证:△DBC≌△EAC;
(2)求证:AE∥BC;
(3)如图2, 若D在边BA的延长线上,且AB=6,AD=2,试求△ABC与△EAC面积的比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.
(1)求m的值;
(2)求A、B两点的坐标;
(3)当﹣3<x<1时,在抛物线上是否存在一点P,使得△PAB的面积是△ABC面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组 有整数解,且点(a,b)落在双曲线 上的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:
(1)扇形A的圆心角的度数为 , 若此次冬令营一共有320名学生参加,则前往C地的学生约有人,并将条形统计图补充完整;
(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF
(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com