【题目】如图,抛物线与轴相交于、两点,与轴相交于点,且点与点的坐标分别为,,点是抛物线的顶点.
(1)求二次函数的关系式.
(2)点为线段上一个动点,过点作轴于点.若,的面积为.
①求与的函数关系式,写出自变量的取值范围.
②当取得最值时,求点的坐标.
(3)在上是否存在点,使为直角三角形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
【答案】(1);(2)①,;②P(,3);
(3)或
【解析】
(1)将点B、C的坐标代入即可;
(2)①求出顶点坐标,直线MB的解析式等,由PD⊥x轴且OD=m知P(m,-2m+6),即可用含m的代数式表示出S;
②在和①的情况下,将S和m的关系式化为顶点式,由二次函数的图象和性质即可写出点P的坐标;
(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P的纵坐标为3,即可求出点P的坐标;当∠PCD=90°时,证∠PDC=∠OCD,由锐角三角函数可求出m的值,即可写出点P的坐标;当∠PDC=90°时,不存在点P.
解:(1)将,代入,
得,
解得,
∴二次函数的解析式为;
(2)①∵
∴顶点M(1,4),
将直线BM的解析式设为,
将点,M(1,4)代入,
可得,
解得,
∴直线BM的解析式为,
如图∵PD⊥x轴且OD=m,
∴P(m,-2m+6),
∴,
即,
∵点为线段上一个动点且,M(1,4),
∴;
②,
∴当时,S取最大值,
∴P(,3);
(3)存在,理由如下:
如图,当∠CPD=90°时,
,
∴四边形CODP为矩形,
∵PD=CO=3,
将代入直线,
得,
∴P;
如图,当∠PCD=90°时,
∵OC=3,OD=m,
,
,
,
,
,
,
解得(舍去),,
∴;
当∠PDC=90°时,
∵PD⊥x轴,
∴不存在点P;
综上所述,点P的坐标为或.
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在扇形统计图样中,产生的有害垃圾C所对应的圆心角 度;
(3)调查发现,在可回收物中塑料类垃圾占13%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设该城市每月产生的生活垃圾为1000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正确的结论是_________(把你认为正确结论的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图,点位于坐标原点,点,,,…,在轴的正半轴上,点,,,…,在二次函数位于第一象限的图象上,,,,…,都是直角顶点在抛物线上的等腰直角三角形,则的斜边长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:
①∠BAE=30°;
②射线FE是∠AFC的角平分线;
③CF=CD;
④AF=AB+CF.
其中正确结论的个数为( )
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工300个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有1500个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费为7800元,那么甲、乙各加工了多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物的顶部有一块标识牌 CD,小明在斜坡上 B 处测得标识牌顶部C 的仰角为 45°, 沿斜坡走下来在地面 A 处测得标识牌底部 D 的仰角为 60°,已知斜坡 AB 的坡角为 30°,AB=AE=10 米.则标识牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数与一次函数交于第二、四象限的,两点,过点作轴于点,,,点的坐标为.
(1)求反比例函数和一次函数的解析式;
(2)请根据图象直接写出的自变量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com