【题目】抛物线 上部分点的横坐标x,纵坐标y的对应值如下表:
x | -2 | -1 | 0 | 1 | 2 |
y | 0 | 4 | 6 | 6 | 4 |
从上表可知,下列说法中正确的是 . (填写序号)
① 抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;
② 抛物线的对称轴是直线 ; ④在对称轴左侧,y随x增大而增大.
【答案】①③④
【解析】解:根据表格数据知道:
抛物线的开口方向向下,
∵x=0,x=1的函数值相等,
∴对称轴为x=,所以选项③正确,符合题意;
∵抛物线与x轴的一个交点的坐标为(-2,0)根据抛物线 的对称性
∴抛物线与x轴的另一个交点坐标为:(3,0),所以选项①正确,符合题意;
在对称轴左侧,y随x增大而增大,所以选项④正确,符合题意;x=0,x=1的函数值相等是6,所以抛物线的最大值不是6,选项②错误,不符合题意;
故答案为 ;①③④.
根据表格的数据首先确定抛物线的对称轴,然后利用抛物线的对称性可以确定抛物线与x轴的另一个交点坐标,也可以确定抛物线的最大值的取值范围,也可以确定其增减性,从而得出答案。
科目:初中数学 来源: 题型:
【题目】某水果生产基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一项工作),并且每人每天摘0.4吨枇杷或0.3吨草莓,当天的枇杷售价每吨2000元,草莓售价每吨3000元,设安排其中x名工人采摘枇杷,两种水果当天全部售出,销售总额达y元.
(1)求y与x之间的函数关系式;
(2)若要求当天采摘枇杷的数量不少于草莓的数量,求销售总额的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为( )
A. 90°B. 80°C. 70°D. 60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△A′OB是将等腰直角三角形AOB的顶点A经过一次变换后所得的等腰直角三角形,请在图②③中,保持O,B位置不动,对点A经过一次(或一组)变换,使变换后的△A′OB仍是等腰直角三角形.要求:作出△A′OB,并写出点A的变换方式.
方式1:把点A向下平移4个单位;
方式2:_________________;
方式3:_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题的逆命题成立的有( )
①勾股数是三个正整数 ②全等三角形的三条对应边分别相等
③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com