精英家教网 > 初中数学 > 题目详情
2.若-2是方程x2-mx+6=0的一个根,则m=-5.

分析 根据一元二次方程的解的定义得到4+2m+6=0,然后解一元一次方程即可.

解答 解:∵-2是方程x2-mx+6=0的一个根,
∴4+2m+6=0,
∴m=-5.
故答案为-5.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.某时刻在南京中华门监测点监测到PM2.5的含量为65微克/米3,即0.000065克/米3,将0.000065用科学记数法表示为6.5×10-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平行四边形ABCD中,E是BC边上的点,且BE=3EC,AE与DC的延长线交于点F.若CD=6,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,如图在△ABC中,AC=BC=10,cos∠CAB=$\frac{3}{5}$与AB重合的直线PQ沿AC方向以1单位/s的速度平移,点E从点A出发沿AB方向以$\frac{6}{5}$单位/s的速度移动,当点E到达B点时,E与PQ同时停止运动.
(1)求AB边上的高及AB的长.
(2)是否存在t使△PEQ为等腰三角形?若存在求出t的值,若不存在请说明理由.
(3)把△PEQ沿直线PQ对折得△PMQ,设△PMQ与△CPQ重叠的面积为S,试求出S关于t的关系式以及其自变量t的取值范围,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在△ABC中,∠ACB=90°,CD⊥AB于D,AD:BD=2:3,则△ACD与△CBD的相似比为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图所示,∠1和∠2是对顶角的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(x-2)(x+2)-4y(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在△ABC中,AC=3$\sqrt{2}$,将△ABC绕点C逆时针转至△DEC的位置,其中点A与点D是对应点,且点D在AB边上,此时BD=3$\sqrt{3}$-3,∠BCD=15°,延长EC交AB于点F.若∠E=30°,则FD=3+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若式子y=-$\frac{1}{x+2}$有意义,则实数x的取值范围是x≠-2.

查看答案和解析>>

同步练习册答案