【题目】如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.
(1)求证:∠PCA=∠ABC.
(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=
,CF=10,求BE的长.
![]()
【答案】(1)见解析;(2)24.
【解析】
(1)连接半径OC,根据切线的性质得:OC⊥PC,由圆周角定理得:∠ACB=90°,所以∠PCA=∠OCB,再由同圆的半径相等可得:∠OCB=∠ABC,从而得结论;
(2)先证明∠CAF=∠ACF,则AF=CF=10,根据cos∠P=cos∠FAD=
,可得AD=8,FD=6,得CD=CF+FD=16,设OC=r,OD=r-8,根据勾股定理列方程可得r的值,再由三角函数cos∠EAB=
,可得AE的长,从而计算BE的长;
(1)证明:连接OC,交AE于H,
![]()
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠ACO=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∴∠PCA=∠OCB,
∵OC=OB,
∴∠OCB=∠ABC,
∴∠PCA=∠ABC;
(2)∵AE∥PC,
∴∠CAF=∠PCA,
∵AB⊥CG,
∴
,
∴∠ACF=∠ABC,
∵∠ABC=∠PCA,
∴∠CAF=∠ACF,
∴AF=CF=10,
∵AE∥PC,
∴∠P=∠FAD,
∴cos∠P=cos∠FAD=
,
在Rt△AFD中,cos∠FAD=
,AF=10,
∴AD=8,
∴FD=
=6,
∴CD=CF+FD=16,
在Rt△OCD中,设OC=r,OD=r-8,
r2=(r-8)2+162,
r=20,
∴AB=2r=40,
∵AB是直径,
∴∠AEB=90°,
在Rt△AEB中,cos∠EAB=
,AB=40,
∴AE=32,
∴BE=
=24.
科目:初中数学 来源: 题型:
【题目】已知直线y=
x+2与y轴交于点A,与双曲线y=
有一个交点为B(2,3),将直线AB向下平移,与x轴.y轴分别交于点C,D,与双曲线的一个交点为P,若
,则点D的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某市的一幢在建的楼,准备上市销售,该楼前有一座装有高压线的铁塔BC经过,市民想知道高压线的电辐射对居住是否有影响,则需要测量该楼到铁塔的水平距离DC的长以及铁塔BC的高度.为了安全,不能直接测量铁塔的高度.在该楼的楼顶A处测得铁塔的塔B的仰角过
,测得铁塔的塔底C的俯角
,该楼的高度
,求铁塔BC的高度(参考数据:
,
,
,
).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年春节期间,兰州市开展了以“精致兰州志愿同行”为主题的系列志愿服务活动.金老师和程老师积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:
①“送温暖”活动岗位:为困难家庭打扫卫生,为留守儿童提供学业辅导;(分别用
,
表示)
②“送平安”活动岗位:消防安全常识宣传,人员密集场所维护秩序.(分别用
,
表示)
(1)金老师从四个岗位中随机选取一个报名,恰好选择“送温暖”活动岗位的概率是多少?
(2)若金老师和程老师各随机从四个活动岗位中选一个报名,请用树状图或列表法求出他们恰好都选择同一个岗位的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.
(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)
(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2013年四川绵阳12分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线
与
轴交于
两点,直线
经过点
,与抛物线的另一个交点为点
,点
的横坐标为3,线段
在线段
上移动,
=1,分别过点
作
轴的垂线,交抛物线于
,交直线于
.
(1)求抛物线的解析式;
(2)当四边形DEFG为平行四边形时,求出此时点P,Q的坐标;
(3)在线段PQ的移动过程中,以D,E,F,G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com