【题目】如图,是的直径,弦于点;点是延长线上一点,,.
(1)求证:是的切线;
(2)取的中点,连接,若的半径为2,求的长.
【答案】(1)见解析(2)
【解析】
(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;
(2)连接OM,由垂径定理和勾股定理进行计算即可.
(1)连接OE,OF,如图1所示:
∵EF⊥AB,AB是⊙O的直径,
∴,
∴∠DOF=∠DOE,
∵∠DOE=2∠A,∠A=30°,
∴∠DOF=60°,
∵∠D=30°,
∴∠OFD=90°.
∴OF⊥FD.
∴FD为⊙O的切线;
(2)连接OM.如图2所示:
∵O是AB中点,M是BE中点,
∴OM∥AE.
∴∠MOB=∠A=30°.
∵OM过圆心,M是BE中点,
∴OM⊥BE.
∴MB=OB=1,OM==.
∵∠DOF=60°,
∴∠MOF=90°.
∴MF=.
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,直线与轴相交于点,与轴交于点.抛物线经过点和点,并与轴相交于另一点,对称轴与轴相交于点.
(1)求抛物线的表达式;
(2)求证:;
(3)如果点在线段上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数(x>0)的图象相交于点B(t,1).
(1)求点B的坐标及一次函数的解析式;
(2)点P的坐标为(m,m)(m>0),过P作PE∥x轴,交直线AB于点E,作PF∥y轴,交函数(x>0)的图象于点F.
①若m=2,比较线段PE,PF的大小;
②直接写出使PE≤PF的m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEF都是等腰直角三角形,∠ACB=∠EFD=90,△DEF,的顶点E与△ABC的斜边AB的中点重合.将△DEF绕点E旋转,旋转过程中,线段AC与线段EF相交于点Q,射线ED与射线BC相交于点P.
(1)求证:△AEQ∽△BPE;
(2)求证:PE平分∠BPQ;
(3)当AQ=2,AE=,求PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是假命题的是( )
A.三角形的外心到三角形的三个顶点的距离相等
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限
D.若关于x的一元一次不等式组无解,则m的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com