【题目】如图,在平面直角坐标系xOy中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数(x>0)的图象相交于点B(t,1).
(1)求点B的坐标及一次函数的解析式;
(2)点P的坐标为(m,m)(m>0),过P作PE∥x轴,交直线AB于点E,作PF∥y轴,交函数(x>0)的图象于点F.
①若m=2,比较线段PE,PF的大小;
②直接写出使PE≤PF的m的取值范围.
【答案】(1)y=x﹣1;(2)①PE=PF;②0<m≤1或m≥2.
【解析】
(1)把B(t,1)代入反比例函数解析式即可求得B的坐标,进而把B的坐标代入y=ax﹣a根据待定系数法即可求得一次函数的解析式;
(2)①依据PE∥x轴,交直线AB于点E,PF∥y轴,交函数(x>0)的图象于点F,即可得到PE=PF;②当m=2,PE=PF;当m=1,PE=PF;依据PE≤PF,即可由图象得到0<m≤1或m≥2.
(1)∵函数(x>0)的图象经过点B(t,1),
∴t=2,
∴B(2,1),
代入y=ax﹣a得,1=2a﹣a,
∴a=1,
∴一次函数的解析式为y=x﹣1;
(2)①当m=2时,点P的坐标为(2,2),
又∵PE∥x轴,交直线AB于点E,PF∥y轴,交函数(x>0)的图象于点F,
∴当y=2时,2=x﹣1,即x=3,
∴PE=3﹣2=1,
当x=2时,=1,
∴PF=2﹣1=1,
∴PE=PF;
②由①可得,当m=2,PE=PF;
∵PE=m+1﹣m=1,
令﹣m=1,则m=1或m=﹣2(舍去),
∴当m=1,PE=PF;
∵PE≤PF,
∴由图象可得,0<m≤1或m≥2.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是( )
A.1个B.3个C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C'是点C关于y轴的对称点,请求出△ABC'的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=AB,点F为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=∠EGC.
(1)求证:CG=DG;
(2)求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则长为______时,能围成的矩形区域的面积最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:
(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当时,随的增大而______;(“增大”或“减小”)
②的图象是由的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数与直线交于点,,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.
(1)求证:△BDF≌△CDE;
(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将2019个边长为l的正方形按如图所示的方式排列,点和点是正方形的顶点,连接分别交正方形的边于点,四边形的面积是,四边形的面积是,…,则为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com